精英家教网 > 高中数学 > 题目详情
12.已知全集为R,集合A={x|($\frac{1}{2}$)x≤1},B={x|x2-6x+8≤0},则A∩(∁RB)[0,2)∪(4,+∞).

分析 解指数不等式求得A,解一元二次不等式求得B,再根据补集的定义求得∁RB,再利用两个集合的交集的定义求得A∩∁RB.

解答 解:∵集合A={x||($\frac{1}{2}$)x≤1}={x|x≥0},B={x|x2-6x+8≤0}={x|2≤x≤4},
∴∁RB={x|x<2,或x>4}
则A∩∁RB=[0,2)∪(4,+∞),
故答案为:[0,2)∪(4,+∞),

点评 本题主要考查指数不等式、一元二次不等式的解法,集合的补集、两个集合的交集的定义和求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知平面α∥β∥γ,两条直线l、m分别与平面α、β、γ相交于点A、B、C和D、E、F,已知AB=6,$\frac{DE}{DF}$=$\frac{2}{5}$,则AC=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某等差数列的前四项和为-4,最后四项之和为36,且所有项的和为36,则此数列共有9项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若f(x),g(x)定义域为R,f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=$\frac{1}{{x}^{2}-x+1}$,求f(x),g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|x2-(2a+1)x+a2+a-2≤0},B={x|x2-x-2<0},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解关于x的不等式:$\frac{2{x}^{2}-(a+1)x+1}{x(x-1)}$>1(a>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.6个电子产品中有2个次品,4个合格品,每次从中任取一个测试,测试完后不放回,直到两个次品找到为止,那么测试次数的X的均值为$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点P(x0,y0)为椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1外一点,l:$\frac{{x}_{0}x}{4}$+$\frac{{y}_{0}y}{3}$=1,则l与C的关系是(  )
A.相交B.相切C.相离D.相交或相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上一点,F1、F2分别是双曲线的左、右焦点,且|PF1|-|PF2|=2,点P到双曲线的两条渐近线的距离之积为$\frac{4}{5}$,则双曲线的离心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案