精英家教网 > 高中数学 > 题目详情
直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,若PQ的中点横坐标为2,则直线的斜率等于(  )
A、
1
4
B、
1
2
C、2
D、4
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:设P(x1,y1),Q(x2,y2),由直线y=kx-2与椭圆x2+4y2=80联立得:(4k2+1)x2-16kx-64=0,由此利用根的判别式、韦达定理,结合已知条件能求出k.
解答: 解:设P(x1,y1),Q(x2,y2),
由直线y=kx-2与椭圆x2+4y2=80联立得:(4k2+1)x2-16kx-64=0
因为直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,
所以△=(-16k)2-4×(4k2+1)×(-64)>0,
即1280k2+256>0,此式显然成立.
把P,Q点的坐标待入椭圆方程得:x12+4y12=80,①
x22+4y22=80,②
①-②得:
y1-y2
x1-x2
=-
x1+x2
4(y1+y2)

所以
y1-y2
x1-x2
=-
x1+x2
4[k(x1+x2)-4]

又因为PQ的中点横坐标为2,所以x1+x2=4,
所以k=-
4
4(4k-4)
,即(2k-1)2=0,解得k=
1
2

故答案为:
1
2
点评:本题考查直线的斜率的求法,是中档题,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1
x
-1.
(1)求函数f(x)的单调区间;
(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围;
(3)若{an}是首项为1的正项数列,且nan+12-(n+1)an2-an+1an=0,若不等式e(n-1)α≥an对任意的n≥2且n∈N*都成立,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x∈(0,
π
2
)时,利用教材习题中的探究结论:“当x∈(0,
π
2
)时,0<sinx<x<
π
2
”,比较cos(sinx),cosx和sin(cosx)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内有一条线段AB,|AB|=4,动点P满足|PA|-|PB|=3,O为AB的中点,则|OP|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

钝角△ABC最大边长为4,其余两边长为x,y,以(x,y)为坐标的点所表示的平面区域的面积为(  )
A、4π-8
B、4π+8
C、4π-6
D、4π-
17
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x-
2
2
n=a0xn+a1xn-1+a2xn-2+…an-1x+an,若a2=14,则an-3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:-1<2x-3<1,q:x(x-3)<0,则p是q的什么条件(  )
A、必要不充分
B、充分不必要
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知c=10,A=30°,C=120°,
(1)求a;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2x,(x≥0)
ax,x<0)
是偶函数,则a=
 

查看答案和解析>>

同步练习册答案