精英家教网 > 高中数学 > 题目详情
17.设a=0.23,b=log0.30.2,c=log30.2,则a,b,c大小关系正确的是(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:a=0.23=0.008,b=log0.30.2>log0.30.3=1,c=log30.2<1,
∴b>a>c,
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知不等式|x-3|+|x+2|≤|a+1|.
(1)当a=-8时,解不等式;
(2)若不等式有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列$1,\frac{1}{{\sqrt{2}}},\frac{1}{{\sqrt{3}}},\frac{1}{2},\frac{1}{{\sqrt{5}}},…$的通项公式an=(  )
A.an=$\frac{1}{{\sqrt{n+1}}}$B.an=$\frac{1}{{\sqrt{n-1}}}$C.${a_n}=\frac{1}{{\sqrt{n}}}$D.${a_n}=\frac{1}{{\sqrt{2n-1}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\frac{2x+1}{2x-1}$,则$f(\frac{1}{2017})+f(\frac{2}{2017})+…+f(\frac{2016}{2017})$=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x3+2x-8的零点用二分法计算,附近的函数值参考数据如表所示:
x121.51.751.6251.6875
f(x)-5.004.00-1.630.86-0.460.18
则方程x3+2x-8=0的近似解可取为(精确度0.1)(  )
A.1.50B.1.66C.1.70D.1.75

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|x+a|,g(x)=|x+3|-x.
(1)当a=1,解不等式f(x)<g(x);
(2)对任意x∈[-1,1],f(x)<g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=sinx(cosx-$\sqrt{3}$sinx).
(1)求函数f(x)在[0,π]上的单调递增区间;
(2)设△ABC的三个角A、B、C所对的边分别为a、b、c,且f(B)=0,a、b、$\sqrt{3}$c成公差大于零的等差数列,求$\frac{sinA}{sinC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知三棱锥P-ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.
(Ⅰ)求证:PC⊥BC.
(Ⅱ)求二面角M-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx,g(x)=-x2+ax-2.
(1)若曲线f(x)=xlnx在x=1处的切线与函数g(x)=-x2+ax-2也相切,求实数a的值;
(2)求函数f(x)在$[{t,t+\frac{1}{4}}]({t>0})$上的最小值;
(3)证明:对任意的x∈(0,+∞),都有$xlnx>\frac{x}{e^x}-\frac{2}{e}$成立.

查看答案和解析>>

同步练习册答案