精英家教网 > 高中数学 > 题目详情
7.已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1和l2平行,且直线l2在y轴上的截距为3.

分析 (1)根据两直线垂直的条件和个直线过点,得到方程组,解得即可;
(2)根据两直线平行的条件和直线l2在y轴上的截距为3,求出a,b即可.

解答 解:(1)∵两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,l1过点(-3,-1),并且直线l1与l2垂直,
∴$\left\{\begin{array}{l}{a(a-1)-b=0}\\{-3a+b+4=0}\end{array}\right.$
解得a=2,b=2,
(2∵直线l2在y轴上的截距为3,
∴b=3.
∵l1∥l2
∴a=-b(a-1),ab≠4(a+1),
∴a=$\frac{3}{4}$.

点评 本题考查了平行垂直关系,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设二次函数f(x)=ax2+bx+c(a,b,c∈R)
(1)若f(x)=2,当x∈R时f(x)最小值为0,且f(x-1)=f(-x-1)恒成立,求f(x)解析式;
(2)若对?x1,x2∈R,且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=$\frac{1}{2}$[f(x1)+f(x2)]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x∈R,则“x2+x-2>0”是“1<x<3”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设方程2lnx=10-3x的解为x0,则关于x的不等式2x-3<x0的最大整数解为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某自来水厂蓄水池中有400吨的水,水厂每小时向蓄水池注入m吨水(m>0),同时蓄水池又向居民小区供水,t小时内,供水量为120$\sqrt{6t}$吨.设t小时后水池的水量为S.
(1)写出S与t的关系式;
(2)当m=80时,多少小时后蓄水池的水量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=sinωx+$\sqrt{3}$cosωx(x∈R,ω>0),又f(α)=-2,f(β)=0,且|α-β|的最小值为$\frac{3π}{4}$,则函数g(x)=f(x)-1在[-2π,0]上零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列说法正确的有①⑤.
①函数y=x2-2|x|+1的递减的区间是(-∞,-1]和[0,1];
②函数y=$\frac{3-5x}{4x+1}$的值域是(-∞,$\frac{3}{4}$)∪($\frac{3}{4}$,+∞);
③函数f(x)=$\frac{1}{{x}^{2}-3x+2}$+$\sqrt{x-1}$的定义域是{x|x≥1,且x≠2};
④若函数f(x)=$\frac{(x+1)(x+a)}{x}$为奇函数,则a=1;
⑤已知二次函数f(x)满足f(2+x)=f(2-x)(x∈R),且f(x)在(2,+∞)上是减函数,则f(-$\sqrt{2}$)<f(5)<f($\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}•\overrightarrow{b}$=$\frac{1}{2}$,$(\overrightarrow{a}-\overrightarrow{c})•(\overrightarrow{b}-\overrightarrow{c})$>0,则|$\overrightarrow{a}+\overrightarrow{b}-\overrightarrow{c}$|的最大值为1$+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知1≤4a-2b≤2,且3≤a+b≤4,求4a+2b的取值范围.

查看答案和解析>>

同步练习册答案