精英家教网 > 高中数学 > 题目详情
13.若${({x^2}-\frac{1}{x^3})^n}$的展开式中含有常数项,则正整数n的最小值是(  )
A.4B.5C.6D.7

分析 求得二项式展开式的通项公式,化简整理,再令x的指数为0,求得2n=5r,由n为正整数,可得r=2,n取得最小值.

解答 解:${({x^2}-\frac{1}{x^3})^n}$的展开式的通项公式为Tr+1=${C}_{n}^{r}$•(x2n-r•(-$\frac{1}{{x}^{3}}$)r
=${C}_{n}^{r}$•(-1)r•x2n-5r,r=0,1,2,…,n,
由题意可得2n-5r=0,
即n=$\frac{5r}{2}$,由n正整数,
可得r=2时,n取得最小值5.
故选:B.

点评 本题考查二项式定理的运用:求常数项,注意运用二项式展开式的通项公式,以及指数的运算性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.有3名男生,4名女生,选其中5人参加一项活动,共有21种不同的选法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且a+b=3.
(1)求椭圆C的方程;
(2)直线x+y-m=0(m是正常数)与椭圆C交于P、Q两点,当$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{12}{5}$时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)(ω>0)$.若函数f(x)相邻两对称轴的距离等于$\frac{π}{2}$.
(1)求ω的值;并求函数f(x)在区间$[{0,\frac{π}{2}}]$的值域;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若$f(A)=1,a=\sqrt{3},b+c=3$(b>c),求边b、c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把函数y=sin(2x-$\frac{π}{4}$)的图象向左平移$\frac{π}{8}$个单位长度,所得到的图象对应的函数在区间[0,$\frac{π}{4}$]上是(  )
A.增函数B.减函数
C.既不是增函数也不是减函数D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a、b、c分别为内角A、B、C对边,且2cos(A+2C)+4sinBsinC=1.
(1)求A;
(2)若a=3$\sqrt{6}$,cos$\frac{B}{2}$=$\frac{2\sqrt{2}}{3}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.命题p:实数x满足x2-4ax+3a2<0,其中a<0,命题q:实数x满足x2-x-6≤0,且q是p的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c是△ABC的三边,若满足a2+b2=c2,即${(\frac{a}{c})^2}+{(\frac{b}{c})^2}=1$,△ABC为直角三角形,类比此结论:若满足an+bn=cn(n∈N,n≥3)时,△ABC的形状为锐角三角形.(填“锐角三角形”,“直角三角形”或“钝角三角形”).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在圆x2+y2=r2中,AB为直径,C为圆上异于A,B的任意一点,则有kAC•KBC=-1,设直线AB过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1中心,且和椭圆相交于点A,B,P(x,y)为椭圆上异于A,B的任意一点,用各类比的方法可得kAP•KBP=-$\frac{{b}^{2}}{{a}^{2}}$.

查看答案和解析>>

同步练习册答案