精英家教网 > 高中数学 > 题目详情
3.在圆x2+y2=r2中,AB为直径,C为圆上异于A,B的任意一点,则有kAC•KBC=-1,设直线AB过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1中心,且和椭圆相交于点A,B,P(x,y)为椭圆上异于A,B的任意一点,用各类比的方法可得kAP•KBP=-$\frac{{b}^{2}}{{a}^{2}}$.

分析 由圆的性质可以类比得到椭圆的类似性质.

解答 解:由圆的性质可以类比得到椭圆的类似性质,即kAC•kBC=-$\frac{{b}^{2}}{{a}^{2}}$,
证明如下:设点A的坐标为(m,n),则点B的坐标为(-m,-n),进而可知$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}$=1,
又设点P的坐标为(x,y),
 则kAP=$\frac{y-n}{x-m}$,kBP=$\frac{y+n}{x+m}$
∴kAP•kBP=$\frac{{y}^{2}-{n}^{2}}{{x}^{2}-{m}^{2}}$,
将y2=b2(1-$\frac{{x}^{2}}{{a}^{2}}$),n2=b2(1-$\frac{{m}^{2}}{{a}^{2}}$)代入得kAP•kBP=-$\frac{{b}^{2}}{{a}^{2}}$.
故答案为:-$\frac{{b}^{2}}{{a}^{2}}$.

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若${({x^2}-\frac{1}{x^3})^n}$的展开式中含有常数项,则正整数n的最小值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}的前n项和为Sn,S5=35,S9=117,则a4=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-aex
(1)若函数g(x)=f(x)+f′(x)在点(0,g(0))处的切线方程为x+y+1=0,求实数a的值;
(2)当a>0时,函数f(x)存在两个零点x1,x2,且x1<x2,求证:lnx1-lnx2<lna+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x>0,x2-1≥2lnx,则¬p为(  )
A.?x≤0,x2-1<2lnxB.?x>0,x2-1<2lnxC.?x>0,x2-1<2lnxD.?x≤0,x2-1<2lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y=x2+bx+c在点(1,2)处的切线与直线y=x-2平行,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“
D.“△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)焦点在 x轴上,长轴长为10,离心率为$\frac{4}{5}$,求椭圆的标准方程;
(2)顶点间的距离为6,渐近线方程为y=±$\frac{3}{2}$x,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面几种推理是类比推理的是(  )
①由直角三角形、等腰三角形、等边三角形内角和是180°,得出所有三角形的内角和都是180°;
②由f(x)=cosx,满足f(-x)=f(x),x∈R,得出f(x)=cosx是偶函数;
③由正三角形内一点到三边距离之和是一个定值,得出正四面体内一点到四个面距离之和是一个定值.
A.①②B.C.①③D.②③

查看答案和解析>>

同步练习册答案