精英家教网 > 高中数学 > 题目详情
15.下列说法正确的是(  )
A.“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“
D.“△ABC中,若A>B,则sinA>sinB”的逆否命题为真命题

分析 A.根据否命题的定义进行判断,
B根据充分条件和必要条件的定义进行判断,
C.根据特称命题的否定是全称命题进行判断,
D.根据正弦定理以及逆否命题的等价性进行判断.

解答 解:A.“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,故A错误,
B.由x2-5x-6=0得x=-1或x=5,则“x=-1”是“x2-5x-6=0”的充分不必要条件,故B错误,
C.全称命题的否定是特称命题,则“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0“故C错误,
D.“△ABC中,若A>B,则a>b,由正弦定理得sinA>sinB,即原命题为真命题,则逆否命题为真命题,故D正确
故选:D

点评 本题主要考查命题的真假判断,涉及四种命题,充分条件和必要条件,以及含有量词的命题的否定,涉及的知识点较多,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.命题p:实数x满足x2-4ax+3a2<0,其中a<0,命题q:实数x满足x2-x-6≤0,且q是p的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=2,$CD=\sqrt{3}$,PD=4,∠PDA=60°,且平面PAD⊥平面ABCD.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)在线段PA上是否存在一点M,使二面角M-BC-D的大小为$\frac{π}{6}$,若存在,求$\frac{PM}{PA}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在圆x2+y2=r2中,AB为直径,C为圆上异于A,B的任意一点,则有kAC•KBC=-1,设直线AB过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1中心,且和椭圆相交于点A,B,P(x,y)为椭圆上异于A,B的任意一点,用各类比的方法可得kAP•KBP=-$\frac{{b}^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.甲、乙两人下棋,和棋的概率为$\frac{1}{2}$,乙获胜的概率为$\frac{1}{3}$,则下列说法正确的是(  )
A.甲获胜的概率是$\frac{1}{6}$B.甲不输的概率是$\frac{1}{2}$
C.乙输了的概率是$\frac{2}{3}$D.乙不输的概率是$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(普通班做)二项式(x-$\frac{1}{x}$)6的展开式的常数项是-20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知${a_1}=\frac{1}{4}$,${a_n}=\frac{1}{2}{a_{n-1}}+{2^{-n}}$(n≥2)计算这个数列前4项,并归纳该数列一个通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面几何中,研究正三角形内任意一点与三边的关系时,我们有真命题:边长为a的正三角形内任意一点到各边的距离之和是定值$\frac{\sqrt{3}}{2}$a.
(1)试证明上述命题;
(2)类比上述命题,请写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出简要的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+bx2+2x-1(b∈R).
(1)设g(x)=$\frac{f(x)+1}{{x}^{2}}$,若函数g(x)在(0,+∞)上没有零点,求实数b的取值范围;
(2)若对?x∈[1,2],均?t∈[1,2],使得et-lnt-4≤f(x)-2x,求实数b的取值范围.

查看答案和解析>>

同步练习册答案