精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)(ω>0)$.若函数f(x)相邻两对称轴的距离等于$\frac{π}{2}$.
(1)求ω的值;并求函数f(x)在区间$[{0,\frac{π}{2}}]$的值域;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若$f(A)=1,a=\sqrt{3},b+c=3$(b>c),求边b、c的长.

分析 (1)首先,结合平面向量数量积的坐标运算,化简函数f(x)的解析式,然后,结合周期公式,确定ω的值再结合x的范围,利用正弦函数的图象和性质即可得解其值域.
(2)根据(1),先确定A的值,然后,结合余弦定理,求解边b,c的长.

解答 解:(1)$f(x)=({cos^2}ωx-{sin^2}ωx)+2\sqrt{3}sinωxcosωx=2sin(2ωx+\frac{π}{6})$,$T=\frac{2π}{2ω}=π,ω=1,f(x)=2sin(2x+\frac{π}{6})$,
∵$x∈[0,\frac{π}{2}]$,
∴$2x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]$,可得:sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴f(x)=2sin(2x+$\frac{π}{6}$)∈[-1,2],
∴f(x)的值域是[-1,2].
(2)∵$f(A)=2sin(2A+\frac{π}{6})=1$,
∴$sin(2A+\frac{π}{6})=\frac{1}{2}$.
∵0<A<π,
∴$2A+\frac{π}{6}=\frac{5π}{6}$,
∴$A=\frac{π}{3}$.
∴${a^2}={b^2}+{c^2}-2bccos\frac{π}{3}$=b2+c2-bc=(b+c)2-3bc,
∵b+c=3,①b>c,a=$\sqrt{3}$,可得:bc=2,②
∴解得:b=2,c=1.
故b的长为2,c的长为1.

点评 本题综合考查了三角恒等变换公式,二倍角公式等知识,余弦定理及其运用等,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知圆O:x2+y2=1和定点P(4,3),圆外一点M作圆的切线MN,N为切点,且|MN|=|MP|
(1)求|MN|的最小值;
(2)以M为圆心,r为半径的圆与圆O:x2+y2=1有公共点,求r最小时圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,若a3•a5•a7=(-$\sqrt{3}$)3,则a2•a8=(  )
A.-$\sqrt{3}$B.-3C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“对于?n∈N,n2>0”的否定为(  )
A.对于?n∈N,n2<0B.?n0∈N,n2>0C.对于?n∈N,n2≤0D.?n0∈N,n2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与直线y=x无公共点,则离心率e的取值范围(  )
A.(1,2]B.(1,2)C.$(1,\sqrt{2}]$D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,已知AC=2,BC=3,sinA=$\frac{12}{13}$,则sinB=$\frac{8}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若${({x^2}-\frac{1}{x^3})^n}$的展开式中含有常数项,则正整数n的最小值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-aex
(1)若函数g(x)=f(x)+f′(x)在点(0,g(0))处的切线方程为x+y+1=0,求实数a的值;
(2)当a>0时,函数f(x)存在两个零点x1,x2,且x1<x2,求证:lnx1-lnx2<lna+1.

查看答案和解析>>

同步练习册答案