精英家教网 > 高中数学 > 题目详情
12.在等比数列{an}中,若a3•a5•a7=(-$\sqrt{3}$)3,则a2•a8=(  )
A.-$\sqrt{3}$B.-3C.3D.$\sqrt{3}$

分析 由a3•a5•a7=(-$\sqrt{3}$)3,利用等比数列性质求出${a}_{5}=-\sqrt{3}$,再由a2•a8=${{a}_{5}}^{2}$,能求出结果.

解答 解:在等比数列{an}中,
由a3•a5•a7=(-$\sqrt{3}$)3
得${a}_{5}=-\sqrt{3}$,
∴a2•a8=${{a}_{5}}^{2}$=(-$\sqrt{3}$)2=3.
故选:C.

点评 本题考查等比数列中两项积的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A、B、C的对边分别是a、b、c,且b2=a2+(c-$\sqrt{3}$a)c.
(1)求角B的大小;
(2)设b2-4bcos(A-C)+4=0,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有3名男生,4名女生,选其中5人参加一项活动,共有21种不同的选法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={2,3,a2+1},B={a2+a-4,2a+1,-1},且A∩B={2},则a的取值集合是(  )
A.{-3}B.{2,-3}C.{-3,$\frac{1}{2}$}D.{-3,2,$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=(a-1)x2+ax+3是偶函数,则f(x)的单调增区间是(  )
A.(-∞,0)B.(-∞,1)C.RD.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=sin2x-2cosx的值域是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且a+b=3.
(1)求椭圆C的方程;
(2)直线x+y-m=0(m是正常数)与椭圆C交于P、Q两点,当$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{12}{5}$时,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(sinωx+cosωx,\sqrt{3}cosωx)$,$\overrightarrow n=(cosωx-sinωx,2sinωx)(ω>0)$.若函数f(x)相邻两对称轴的距离等于$\frac{π}{2}$.
(1)求ω的值;并求函数f(x)在区间$[{0,\frac{π}{2}}]$的值域;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若$f(A)=1,a=\sqrt{3},b+c=3$(b>c),求边b、c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知a,b,c是△ABC的三边,若满足a2+b2=c2,即${(\frac{a}{c})^2}+{(\frac{b}{c})^2}=1$,△ABC为直角三角形,类比此结论:若满足an+bn=cn(n∈N,n≥3)时,△ABC的形状为锐角三角形.(填“锐角三角形”,“直角三角形”或“钝角三角形”).

查看答案和解析>>

同步练习册答案