精英家教网 > 高中数学 > 题目详情
2.已知a,b,c是△ABC的三边,若满足a2+b2=c2,即${(\frac{a}{c})^2}+{(\frac{b}{c})^2}=1$,△ABC为直角三角形,类比此结论:若满足an+bn=cn(n∈N,n≥3)时,△ABC的形状为锐角三角形.(填“锐角三角形”,“直角三角形”或“钝角三角形”).

分析 由已知的等式cn=an+bn,得到c为三角形的最大边,利用不等式的性质及作差的方法判断得到a2+b2>c2,然后利用余弦定理表示出cosC,由得到的a2+b2>c2,判断出cosC大于0,即C为锐角,根据三角形边角关系:大边对大角,得到三角形三内角都为锐角,从而得到三角形为锐角三角形.

解答 解:∵cn=an+bn
∴c>a,c>b,即c为最大边,
∴cn-2>an-2,cn-2>bn-2
即cn-2-an-2>0,cn-2-bn-2>0,
∴(a2+b2)cn-2-cn=(a2+b2)cn-2-an-bn=a2(cn-2-an-2)+b2(cn-2-bn-2)>0,
即(a2+b2)cn-2>cn
∴a2+b2>c2
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$>0,
则△ABC也是锐角三角形,
故答案为:锐角三角形.

点评 此题考查了三角形形状的判断,涉及的知识有三角形的边角关系,不等式的基本性质,余弦函数的图象与性质以及余弦定理,其中利用作差法判断出a2+b2>c2是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在等比数列{an}中,若a3•a5•a7=(-$\sqrt{3}$)3,则a2•a8=(  )
A.-$\sqrt{3}$B.-3C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若${({x^2}-\frac{1}{x^3})^n}$的展开式中含有常数项,则正整数n的最小值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正三棱柱ABC-A1B1C1中,AB=AA1=2,D为CC1中点.
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(2-x),0≤x<k}\\{{x}^{3}-3{x}^{2},k≤x≤a}\end{array}\right.$,若存在K使得函数的f(x)值域为[-1,1],则实数a的取值范围是[2,1+$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|x2+x-2<0},N={x|log2x<1},则M∩N=(  )
A.(-2,1)B.(-1,2)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知等差数列{an}的前n项和为Sn,S5=35,S9=117,则a4=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-aex
(1)若函数g(x)=f(x)+f′(x)在点(0,g(0))处的切线方程为x+y+1=0,求实数a的值;
(2)当a>0时,函数f(x)存在两个零点x1,x2,且x1<x2,求证:lnx1-lnx2<lna+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)焦点在 x轴上,长轴长为10,离心率为$\frac{4}{5}$,求椭圆的标准方程;
(2)顶点间的距离为6,渐近线方程为y=±$\frac{3}{2}$x,求双曲线的标准方程.

查看答案和解析>>

同步练习册答案