精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,离心率为,右焦点到直线的距离为2.

1)求椭圆的方程;

2)椭圆下顶点为,直线)与椭圆相交于不同的两点,当时,求的取值范围.

【答案】1;(2

【解析】试题分析:(1)由题已知椭圆方程;,利用条件离心率为,及右焦点到直线的距离为,易求出的值,得出方程.

2)由题可先让直线方程与(1)中的椭圆方程联立,(有交点)再设出两点坐标并用根与系数的关系表示出,再结合条件,可表示出的关系式,再代入,可求出的取值范围.

试题解析:(1)设椭圆的右焦点为,依题意有

,得,

椭圆的方程为

2)椭圆下顶点为,由消去,得

直线与椭圆有两个不同的交点

,即

,则

中点坐标为

,即

代入

,解得的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足:对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;当x∈(1,2]时,f(x)=2﹣x.若f(a)=f(2020),则满足条件的最小的正实数a的值为(  )

A. 28 B. 100 C. 34 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , an>0,且满足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通项公式an
(2)若bn=(﹣1)nan , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为 ,则 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 )的左、右焦点分别为 的直线交双曲线右支于 两点 则双曲线的离心率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为,且

(1)求的值;

(2)若,求三角形ABC的面积的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 的中点, 的中点,且为正三角形.

)求证: 平面

)若 ,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据a、b、9、10、11的平均数为10,方差为2,则|a﹣b|=(
A.2
B.4
C.8
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.
(Ⅰ)证明:OB⊥EH;
(Ⅱ)若直线BH与平面EFG所成的角的正弦值为 ,求二面角D﹣AC﹣H的余弦值.

查看答案和解析>>

同步练习册答案