精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-1与函数g(x)=aln x(a≠0).
(1)若f(x),g(x)的图像在点(1,0)处有公共的切线,求实数a的值;
(2)设F(x)=f(x)-2g(x),求函数F(x)的极值.
(1)a=2.     (2)见解析
解:(1)因为f(1)=0,g(1)=0,
所以点(1,0)同时在函数f(x),g(x)的图像上,
因为f(x)=x2-1,g(x)=aln x,
所以f′(x)=2x,g′(x)=
由已知,得f′(1)=g′(1),所以2=,即a=2.
(2)因为F(x)=f(x)-2g(x)=x2-1-2aln x(x>0),
所以F′(x)=2x-
当a<0时,
因为x>0,且x2-a>0,所以F′(x)>0对x>0恒成立,
所以F(x)在(0,+∞)上单调递增,F(x)无极值;
当a>0时,
令F′(x)=0,解得x1,x2=- (舍去),
所以当x>0时,F′(x),F(x)的变化情况如下表:
x
(0,)

(,+∞)
F′(x)

0

F(x)
递减
极小值
递增
 
所以当x=时,F(x)取得极小值,且F()=()2-1-2aln=a-1-aln a.
综上,当a<0时,函数F(x)在(0,+∞)上无极值;
当a>0时,函数F(x)在x=处取得极小值a-1-aln a.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线处的切线方程是.
(1)求的解析式;
(2)求曲线过点的切线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数
⑴当时,求函数的表达式;
⑵若,函数上的最小值是2 ,求的值;
(3)⑵的条件下,求直线与函数的图象所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,.
(1)讨论内和在内的零点情况.
(2)设内的一个零点,求上的最值.
(3)证明对恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(1)若函数上是减函数,则的取值范围是(  )
A.B.C.D.
(2)已知函数.则有的极大值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;
(3)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则的导函数(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为(  )
A.2B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案