精英家教网 > 高中数学 > 题目详情
6.如图,△ABC为圆的内接三角形,AB=AC,BD为圆的弦,且AC∥BD,过A作圆的切线与DB的延长线交于点F,AD与BC交于点E.
(I)求证:四边形ACBF为平行四边形;
(Ⅱ)若AF=2$\sqrt{7}$,BD=3求线段BE的长.

分析 (1I)由已知条件推导出∠ABC=∠BAF,从而得到AF∥BC,再由BD∥AC,能够证明四边形ACBF为平行四边形.
(Ⅱ)由已知条件利用切割线定理求出FB=4,由此能够求出线段BE的长.

解答 (I)证明:∵AF与圆相切于点A,∴∠BAF=∠ACB,
∵AB=AC,∴∠ABC=∠ACB,∴∠ABC=∠BAF,
∴AF∥BC,
∵BD∥AC,∴四边形ACBF为平行四边形.
(Ⅱ)解:∵AF与圆相切于点A,
∴AF2=FB•(FB+BD),即62=FB•(FB+5),
解得FB=4,
根据(1)有AB=AC=FB=4,BC=AF=2$\sqrt{7}$,
设BE=x,由BD∥AC,得$\frac{AC}{BD}$=$\frac{CE}{AE}$,
∴$\frac{4}{3}=\frac{2\sqrt{7}-x}{x}$,解得x=$\frac{6\sqrt{7}}{7}$.

点评 本题考查平行四边形的证明,考查线段长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知z∈C且z=(1+i)i,则|z|等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.计算(log32-log318)÷81-${\;}^{\frac{1}{4}}$=(  )
A.-$\frac{3}{2}$B.-6C.$\frac{3}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知某几何体的三视图如图,其中正视图中半圆直径为4,则该几何体的体积为64-4π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,点D为椭圆E上任意一点.△DF1F2面积最大值为1,椭圆离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设T为直线x=2上任意一点,过右焦点F2,作直线TF2的垂线交椭圆E于点P、Q,线段PQ的中点为N,
     证明:O、N、T三点共线(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设I是直角△ABC的内心,其中AB=3,BC=4,CA=5,若$\overrightarrow{AI}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=(  )
A.$\frac{7}{12}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x、y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若p是¬q的充分不必要条件,则¬p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四个命题:
①样本相关系数r满足:|r|≤1,而且|r|越接近于1,线性相关关系越强:
②回归直线就是散点图中经过样本数据点最多的那条直线;
③命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
④己知点A(-l,0),B(l,0),若|PA|-|PB|=2,则动点P的轨迹为双曲线的一支.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案