精英家教网 > 高中数学 > 题目详情
18.已知实数x、y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$作出可行域如图,

化目标函数z=x-2y为$y=\frac{x}{2}-\frac{z}{2}$,
由图可知,当直线$y=\frac{x}{2}-\frac{z}{2}$过A(0,-1)时,直线在y轴上的截距最小,z有最大值为0-2×(-1)=2.
故选:C.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=sin(x-\frac{π}{3})$的图象的一条对称轴方程为(  )
A.$\frac{π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≤1}\\{x+y+2≥0}\\{kx-y≥0}\end{array}\right.$,若目标函数z=2x-y仅在点(1,k)处取得最小值,则实数k的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,△ABC为圆的内接三角形,AB=AC,BD为圆的弦,且AC∥BD,过A作圆的切线与DB的延长线交于点F,AD与BC交于点E.
(I)求证:四边形ACBF为平行四边形;
(Ⅱ)若AF=2$\sqrt{7}$,BD=3求线段BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{m}$=($\sqrt{3}$sin(2π-x),cosx),$\overrightarrow{n}$=(sin($\frac{3}{2}$π-x),cos(π+x)),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(I)求y=f(x)的单调递增区间和对称中心;
(Ⅱ)在△ABC中,角A、B、C所对应的边分别为a、b、c,若有f(B)=$\frac{1}{2}$,b=7,sinA+sinC=$\frac{13\sqrt{3}}{14}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,设D为边BC的中点,求证:
(1)$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$;
(2)3$\overrightarrow{AB}+2\overrightarrow{BC}+\overrightarrow{CA}$=2$\overrightarrow{AD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x),g(x)都是[0,1]上的实值函数,证明:存在x0,y0∈[0,1],使得|x0y0-f(x0)-g(y0)|≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:
(1)$\sqrt{1-2sin1°•cos1°}$;
(2)$\sqrt{\frac{1+sinθ}{1-sinθ}}$-$\sqrt{\frac{1-sinθ}{1+sinθ}}$(θ为第二象限角).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个组合体的主视图和左视图相同,如图,其体积为22π,则图中的x为(  )
A.4B.4.5C.5D.5.5

查看答案和解析>>

同步练习册答案