精英家教网 > 高中数学 > 题目详情
8.函数$f(x)=sin(x-\frac{π}{3})$的图象的一条对称轴方程为(  )
A.$\frac{π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

分析 由条阿金根据正弦函数的图象的对称性,求得函数$f(x)=sin(x-\frac{π}{3})$的图象的一条对称轴方程.

解答 解:对于函数$f(x)=sin(x-\frac{π}{3})$,令x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈z,求得x=kπ+$\frac{5π}{6}$,k∈z,
即函数$f(x)=sin(x-\frac{π}{3})$的图象的对称轴方程为x=kπ+$\frac{5π}{6}$,k∈z,
当k=0时,对称轴方程为x=$\frac{5π}{6}$,
故选:D.

点评 本题主要考查正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow m=({sin\frac{x}{3},-1})$,$\overrightarrow n=({\frac{{\sqrt{3}}}{2}A,\frac{1}{2}Acos\frac{x}{3}}),(A>0)$,函数$f(x)=\overrightarrow n•\overrightarrow m$的最大值为2.
(1)求f(x)的最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知一次函数f(x)满足f(1)=2f(2)=3,判断函数g(x)=-1+lgf2(x)在区间[0,9]上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知z∈C且z=(1+i)i,则|z|等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,该四棱锥侧面积是(  ) 
A.6$\sqrt{5}$B.4($\sqrt{5}$+1)C.4$\sqrt{5}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(理)关于x的实系数一元二次方程x2-2px+4=0的两个虚根z1、z2,若z1、z2在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),若向量λ$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{c}$=(-4,-7)共线,则λ=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.计算(log32-log318)÷81-${\;}^{\frac{1}{4}}$=(  )
A.-$\frac{3}{2}$B.-6C.$\frac{3}{2}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x、y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-2≤0}\\{x-y-1≤0}\end{array}\right.$,则z=x-2y的最大值为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

同步练习册答案