精英家教网 > 高中数学 > 题目详情
16.已知向量$\overrightarrow m=({sin\frac{x}{3},-1})$,$\overrightarrow n=({\frac{{\sqrt{3}}}{2}A,\frac{1}{2}Acos\frac{x}{3}}),(A>0)$,函数$f(x)=\overrightarrow n•\overrightarrow m$的最大值为2.
(1)求f(x)的最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

分析 (1)由f(x)=$\overrightarrow n•\overrightarrow m$利用两角差的正弦函数公式化简可得$f(x)=Asin(\frac{x}{3}-\frac{π}{6})$,结合已知可求A的值,即可得解析式,由周期公式可求最小正周期.
(2)由(1)结合诱导公式化简f(3α+$\frac{π}{2}$)=$\frac{10}{13}$可得sinα,由诱导公式化简f(3β+2π)=$\frac{6}{5}$可得cosβ,结合α,β的范围,由同角三角函数关系式可求cosα,sinβ的值,由两角和的余弦函数公式即可得解.

解答 解:∵f(x)=$\overrightarrow n•\overrightarrow m$,向量$\overrightarrow m=({sin\frac{x}{3},-1})$,$\overrightarrow n=({\frac{{\sqrt{3}}}{2}A,\frac{1}{2}Acos\frac{x}{3}}),(A>0)$,
∴$f(x)=\frac{{\sqrt{3}}}{2}Asin\frac{x}{3}-\frac{1}{2}Acos\frac{x}{3}=A({\frac{{\sqrt{3}}}{2}sin\frac{x}{3}-\frac{1}{2}cos\frac{x}{3}})=Asin({\frac{x}{3}-\frac{π}{6}})$…(3分)
因为函数$f(x)=Asin(\frac{x}{3}-\frac{π}{6})$,(A>0)的最大值为2,
所以A=2,…(2分)
所以$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$…(3分)
f(x)的最小正周期$T=\frac{2π}{{\frac{1}{3}}}=6π$…(4分)
(2)∵$\frac{10}{13}$=f(3α+$\frac{π}{2}$)=2sin($\frac{1}{3}×(3a+\frac{π}{2})-\frac{π}{6}$)=2sinα,…(5分)
∴sinα=$\frac{5}{13}$,…(6分)
∵f(3β+2π)=2sin($\frac{1}{3}$×(3β+2π)-$\frac{π}{6}$)=2cosβ=$\frac{6}{5}$,∴cos$β=\frac{3}{5}$.
∵α,β∈[0,$\frac{π}{2}$],
∴cos$α=\sqrt{1-si{n}^{2}α}$=$\frac{12}{13}$,sin$β=\sqrt{1-co{s}^{2}β}$=$\frac{4}{5}$…(8分)
∴cos(α+β)=cosαcosβ-sinαsinβ=$\frac{12}{13}×\frac{3}{5}-\frac{5}{13}×\frac{4}{5}=\frac{16}{65}$.…(12分)

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的周期性及其求法,三角函数恒等变换的应用,平面向量的应用,综合性较强,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知实数x、y、z满足2x-y-2z-6=0,x2+y2+z2≤4,则2x+y+z=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,已知a=1,b=1,c=$\sqrt{3}$,则∠C=(  )
A.120°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为(  )
A.增函数B.周期函数C.奇函数D.偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow m=({sin\frac{x}{3},-1})$,$\overrightarrow n=({\frac{{\sqrt{3}}}{2}A,\frac{1}{2}Acos\frac{x}{3}}),(A>0)$,函数f(x)=$\overrightarrow n•\overrightarrow m$的最大值为2.
(1)求f(x)的最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,已知圆C:(x-1)2+(y-2)2=1,过x轴上的一个动点P引圆C的两条切线PA,PB,切点分别为A,B,则线段AB长度的取值范围是[$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知幂函数y=f(x)的图象过点$(3,\frac{1}{3})$,则log2f(2)的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=-x2ex
(1)求函数f(x)的单调区间;
(2)若函数g(x)=f(x)-b在定义域内恰有三个零点,求实数b的取值范围;
(3)当曲线y=f(x)的切线l的斜率为负数时,求l与x轴交点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=sin(x-\frac{π}{3})$的图象的一条对称轴方程为(  )
A.$\frac{π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案