精英家教网 > 高中数学 > 题目详情
13.(理)关于x的实系数一元二次方程x2-2px+4=0的两个虚根z1、z2,若z1、z2在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为4.

分析 由题意两个虚数根z1,z2是共轭复数,可得椭圆的短轴长:2b=|z1+z2|=2|p|,焦距为2c=|z1-z2|,然后求出长轴长.

解答 解:因为p为实数,p≠0,z1,z2为虚数,
所以(-2p)2-4×4<0,即p2<4,
解得-2<p<2.
由z1,z2为共轭复数,知Z1,Z2关于x轴对称,
所以椭圆短轴在x轴上,又由椭圆经过原点,
可知原点为椭圆短轴的一端点,
根据椭圆的性质,复数加,减法几何意义及一元二次方程根与系数的关系,
可得椭圆的短轴长=2b=|z1+z2|=2|p|,
焦距2c=|z1-z2|=$\sqrt{|({z}_{1}+{z}_{2})^{2}-4{z}_{1}{z}_{2}|}$=2$\sqrt{4-{p}^{2}}$,
长轴长2a=2$\sqrt{{b}^{2}+{c}^{2}}$=2$\sqrt{4-{p}^{2}+{p}^{2}}$=4,
故答案为:4.

点评 本题考查复数的基本概念,椭圆的基本性质,是小型综合题,考查学生分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,已知圆C:(x-1)2+(y-2)2=1,过x轴上的一个动点P引圆C的两条切线PA,PB,切点分别为A,B,则线段AB长度的取值范围是[$\sqrt{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中,已知椭圆C的方程为$\frac{x^2}{8}+{y^2}$=1,设AB是过椭圆C中心O的任意弦,l是线段AB的垂直平分线,M是l上与O不 重合的点.
(1)求以椭圆的焦点为顶点,顶点为焦点的双曲线方程;
(2)若MO=2OA,当点A在椭圆C上运动时,求点M的轨迹方程;
(3)记M是l与椭圆C的交点,若直线AB的方程为y=kx(k>0),当△AMB的面积为$\frac{{4\sqrt{14}}}{7}$时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥中P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(I)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,PA=PD=AD=2,点M在线段PC上,且PM=2MC,求四棱锥P-ABCD与三棱锥P-QBM的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=sin(x-\frac{π}{3})$的图象的一条对称轴方程为(  )
A.$\frac{π}{3}$B.-$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点${F_1}(-\sqrt{2},0)、{F_2}(\sqrt{2},0)$,平面直角坐标系上的一个动点P(x,y)满足$|\overrightarrow{P{F_1}}|+|\overrightarrow{P{F_2}}|=4$.设动点P的轨迹为曲线C.
(1)求曲线C的轨迹方程;
(2)点M是曲线C上的任意一点,GH为圆N:(x-3)2+y2=1的任意一条直径,求$\overrightarrow{MG}•\overrightarrow{MH}$的取值范围;
(3)已知点A、B是曲线C上的两个动点,若$\overrightarrow{OA}⊥\overrightarrow{OB}$(O是坐标原点),试证明:直线AB与某个定圆恒相切,并写出定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=$({0,-2\sqrt{3}})$,$\overrightarrow{b}$=$({1,\sqrt{3}})$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.-3B.$-\sqrt{3}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD的底面ABCD为平行四边形,且满足:BD=BA,BD⊥BA,AD=2$\sqrt{2}$,又PA=PD=$\sqrt{6}$,M、N分别为AD、PC的中点.
(Ⅰ)求证:MN∥平面PAB.
(Ⅱ)连接PM、BM,若∠PMB=45°,
(i)证明:平面PBC⊥平面ABCD;
(ii)求四面体N-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,设D为边BC的中点,求证:
(1)$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$;
(2)3$\overrightarrow{AB}+2\overrightarrow{BC}+\overrightarrow{CA}$=2$\overrightarrow{AD}$.

查看答案和解析>>

同步练习册答案