精英家教网 > 高中数学 > 题目详情
9.已知$\overrightarrow a=(x+1,y-1),\overrightarrow b=(1,-1)$,$\overrightarrow a⊥\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$的最小值为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.以上都不对

分析 由向量垂直的坐标运算可得x-y=2.求出$\overrightarrow{a}+\overrightarrow{b}$的坐标,代入向量的模,转化为关于x的二次函数求解.

解答 解:由$\overrightarrow a=(x+1,y-1),\overrightarrow b=(1,-1)$,$\overrightarrow a⊥\overrightarrow b$,
得(x+1)×1+(y-1)×(-1)=x+1-y+1=0,即x-y=2.
∴$|\overrightarrow a+\overrightarrow b|$=|(x+2,y-2)|=$\sqrt{(x+2)^{2}+(y-2)^{2}}=\sqrt{(x+2)^{2}+(x-4)^{2}}$
=$\sqrt{2{x}^{2}-4x+20}=\sqrt{2(x-1)^{2}+18}$.
∴$|\overrightarrow{a}+\overrightarrow{b}{|}_{min}=3\sqrt{2}$.
故选:D.

点评 本题考查平面向量的数量积运算,训练了利用配方法求二次函数的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某空间几何体的三视图如图所示,则该几何体的表面积是60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下四个命题中,其中正确的个数为(  )
 ①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2=0”;
 ②“$α=\frac{π}{4}$”是“cos2α=0”的充分不必要条件;
 ③若命题$p:?{x_0}∈R,x_0^2+{x_0}+1=0$,则?p:?x∈R,x2+x+1=0;
 ④若p∧q为假,p∨q为真,则p,q有且仅有一个是真命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的首项为4,公差为2,前n项和为Sn,若Sk-ak+5=44(k∈N*),则k的值为(  )
A.6B.7C.8D.7或-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列对应关系f中,不是从集合A到集合B的映射的是(  )
A.A={x|x≥0},B=R,f:求算术平方根B.A=R,B=R,f:取绝对值
C.A=R,B=R,f:取倒数D.A=R+,B=R,f:求平方

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x4=a(x-1)4+b(x-1)3+c(x-1)2+d(x-1)+e,则a+b+c+d等于(  )
A.0B.15C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a$=$({-1,\left.{\sqrt{3}})},\right.\overrightarrow b$=$({\sqrt{3},\left.{-1})}\right.$,则$\overrightarrow a$与$\overrightarrow b$的夹角等于$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求向量$\overrightarrow{a}$+2$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列命题
①命题“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函数f(x)=cos2ax-sin2ax的最小正周期为π”是“a=1”的必要不充分条件;
③“平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角”的充分必要条件是“$\overrightarrow{a}•\overrightarrow{b}$<0”;
④设有四个函数y=x-1,y=${x^{\frac{1}{2}}}$,y=x2,y=x3其中在(0,+∞)上是增函数的函数有3个.
真命题的序号是①②④.

查看答案和解析>>

同步练习册答案