精英家教网 > 高中数学 > 题目详情
16.对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点.
(1)若函数f(x)=2x+$\frac{4}{x}$-5,求此函数的不动点;
(2)若二次函数f(x)=ax2-x+3在x∈(1,+∞)上有两个不同的不动点,求实数a的取值范围.

分析 (1)由定义可得f(x)=x,解方程即可得到所求不动点;
(2)由题意可得ax2-2x+3=0在x∈(1,+∞)上有两个不等的实根,讨论a>0或a<0和判别式大于0,对称轴介于x=1的右边,x=1的函数值大于0,解不等式即可得到所求范围.

解答 解:(1)函数f(x)=2x+$\frac{4}{x}$-5,
由f(x)=x,即x+$\frac{4}{x}$-5=0,
即为x2-5x+4=0,解得x=1和4,
则此函数的不动点为1,4;
(2)二次函数f(x)=ax2-x+3在x∈(1,+∞)上有两个不同的不动点,
即为ax2-2x+3=0在x∈(1,+∞)上有两个不等的实根,
当a>0时,△=4-12a>0,且a-2+3>0,$\frac{1}{a}$>0,解得0<a<$\frac{1}{3}$;
当a<0,由于对称轴x=$\frac{1}{a}$<0,在x∈(1,+∞)上没有两个不等的实根,不成立.
综上可得,0<a<$\frac{1}{3}$.
则实数a的取值范围为(0,$\frac{1}{3}$).

点评 本题考查新定义:“不动点”的理解和应用,考查二次方程的根的分布情况,注意结合二次函数的图象和性质,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图所示在6×6的方格中,有A,B两个格子,则从该方格表中随机抽取一个矩形,该矩形包含格子A但不包含格子B的概率为$\frac{4}{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:函数f(x)=x2-2ax+3在区间[-1,2]上单调递增;
命题q:函数g(x)=lg(x2+ax+4)的定义域为R;
若命题“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a∈R,函数f(x)满足f(2x)=x2-2ax+a2-1.
(Ⅰ)求f(x)的解析式,并写出f(x)的定义域;
(Ⅱ)若f(x)在$[{2^{a-1}},{2^{{a^2}-2a+2}}]$上的值域为[-1,0],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x∈R,x2+1>0”的否定是(  )
A.?x∈R,x2+1<0B.?x∈R,x2+1≤0C.?x∈R,x2+1≤0D.?x∈R,x2+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等比数列{an}中,a2=1,a4=2,则a6=(  )
A.$2\sqrt{2}$B.4C.$4\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC满足$AB=4,AC=2,∠BAC=\frac{2π}{3}$,点D、E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=2EF,则 $\overrightarrow{AF}•\overrightarrow{DC}$的值为(  )
A.-$\frac{3}{2}$B.$\frac{9}{4}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,则$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=2tan(2x-\frac{π}{4})-1$在一个周期内的图象是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案