精英家教网 > 高中数学 > 题目详情
11.命题“?x∈R,x2+1>0”的否定是(  )
A.?x∈R,x2+1<0B.?x∈R,x2+1≤0C.?x∈R,x2+1≤0D.?x∈R,x2+1<0

分析 运用全称命题的否定为特称命题,以及量词和不等号的变化,即可得到所求命题的否定.

解答 解:由全称命题的否定为特称命题,可得
命题“?x∈R,x2+1>0”的否定“?x∈R,x2+1≤0”,
故选:C.

点评 本题考查命题的否定,注意运用全称命题的否定为特称命题,以及量词和不等号的变化,考查转换能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(k2≥3.841)≈0.05,对此,四名同学作出了以下的判断:
p:在犯错误的概率不超过0.05的前提下认为“能起到预防感冒的作用”;
q:如果某人未使用该血清,那么他在一年中有95%的可能性得感冒;
r:这种血清预防感冒的有效率为95%;
s:这种血清预防感冒的有效率为5%.
则下列结论中,正确结论的序号是(1).
(1)p∧非q;(2)非p∧q;(3)(非p∧q)∧(r∨s);(4)(p∨非r)∧(非q∨s).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)请用分析法证明:$\sqrt{5}+2>\sqrt{3}+\sqrt{6}$
(Ⅱ)已知a,b为正实数,请用反证法证明:a+$\frac{1}{b}$与b+$\frac{1}{a}$中至少有一个不小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y2=2x的焦点坐标为(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,0)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数1+2i,a+bi(a、b∈R,i是虚数单位)满足(1+2i)(a+bi)=5+5i,则|a+bi|=(  )
A.3$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点.
(1)若函数f(x)=2x+$\frac{4}{x}$-5,求此函数的不动点;
(2)若二次函数f(x)=ax2-x+3在x∈(1,+∞)上有两个不同的不动点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列四个结论:
①若x>0,则x>sinx恒成立;   
②“若am2<bm2,则a<b”的逆命题为真命题
③?m∈R,使f(x)=(m-1)x${\;}^{{m}^{2}-4m+3}$是幂函数,且在(-∞,0)上单调递减
④对于命题p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1>0
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.假设关于某种设备的使用年限x(年)与所支出的维修费用y(万元)有如下统计资料:
x23456
y2.23.85.56.57.0
参考数据:$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90,$\sum_{i=1}^{5}$xiyi=112.3.
(1)作出散点图
(2)求出回归直线方程,并估计使用年限为10年时,维修费用约是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列表:
喜爱打篮球不喜爱打篮球合计
男生20525
女生101525
合计302050
(1)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中选2人,求恰有一名女生的概率.
(3)为了研究喜欢打蓝球是否与性别有关,计算出K2,你有多大的把握认为是否喜欢打蓝球与性别有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
下面的临界值表供参考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案