精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1 (a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程;
(2)斜率为2的直线与椭圆交于P、Q两点OP⊥OQ,求直线l的方程;
(3)在x上是否存在一点E使得过E的任一直线与椭圆若有两个交点M、N则都有$\frac{1}{{|EM{|^2}}}+\frac{1}{{|EN{|^2}}}$为定值?若存在,求出点E的坐标及相应的定值.

分析 (1)由已知,$\frac{c}{a}=\frac{{\sqrt{3}}}{2},\frac{1}{2}ab=1$,又a2=b2+c2,解出即可得出.
(2)设直线l的方程为y=2x+t,则$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=2x+t\end{array}\right.$,可得$(4{t^2}-4){({\frac{y}{x}})^2}+16({\frac{y}{x}})+({t^2}-16)=0$,根据OP⊥OQ,可得kOP•kOQ=-1,解出即可得出.
(3)设E(m,0)、M(x1,y1)、N(x2,y2),当直线n不为x轴时的方程为x=ty+m,与椭圆方程联立化为(t2+4)y2+2tmy+(m2-4)=0,利用根与系数的关系可得:$\frac{1}{{|EM{|^2}}}+\frac{1}{{|EN{|^2}}}$为定值5.

解答 解:(1)由已知,$\frac{c}{a}=\frac{{\sqrt{3}}}{2},\frac{1}{2}ab=1$,又a2=b2+c2,解得$a=2,b=1,c=\sqrt{3}$,
∴椭圆的方程为$\frac{x^2}{4}+{y^2}=1$.…(3分)
(2)设直线l的方程为y=2x+t,则由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=2x+t\end{array}\right.$,可得$\frac{x^2}{4}+{y^2}={({\frac{y-2x}{t}})^2}$,
即$(4{t^2}-4){({\frac{y}{x}})^2}+16({\frac{y}{x}})+({t^2}-16)=0$
∵OP⊥OQ,∴$\frac{{{t^2}-16}}{{4{t^2}-4}}=-1⇒{t^2}=4⇒t=±2$,
∴直线l的方程为y=2x±2即2x-y±2=0.…(7分)
(3)设E(m,0)、M(x1,y1)、N(x2,y2),当直线n不为x轴时的方程为x=ty+m,
联立椭圆方程得:$\left\{\begin{array}{l}x=ty+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$⇒(t2+4)y2+2tmy+(m2-4)=0,∴${y_1}+{y_2}=-\frac{2tm}{{{t^2}+4}},{y_1}{y_2}=\frac{{{m^2}-4}}{{{t^2}+4}}$…(8分)
$\frac{1}{{|EA{|^2}}}+\frac{1}{{|EB{|^2}}}=\frac{1}{{(1+{t^2})y_1^2}}+\frac{1}{{(1+{t^2})y_2^2}}=\frac{1}{{(1+{t^2})}}•\frac{{{{({y_1}+{y_2})}^2}-2{y_1}{y_2}}}{y_1^2y_2^2}$=$\frac{1}{{1+{t^2}}}•\frac{{(32-8{m^2})+(2{m^2}+8){t^2}}}{{{{({m^2}-4)}^2}}}$…(10分)
∴当且仅当32-8m2=2m2+8即$m=±\frac{{2\sqrt{15}}}{5}$时$\frac{1}{{|EA{|^2}}}+\frac{1}{{|EB{|^2}}}=5$(定值).
即   在x轴上存在点E使得$\frac{1}{{|EA{|^2}}}+\frac{1}{{|EB{|^2}}}$为定值5,点E的坐标为$({\frac{{2\sqrt{15}}}{3},0})$或$({-\frac{{2\sqrt{15}}}{3},0})$.    经检验,当直线AB为x轴时上面求出的点E也符合题意.…(12分)

点评 本题考查了椭圆的标准方程及其性质、相互垂直的直线斜率之间的关系、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是(  )
A.甲、乙、丙的总体的平均数不相同B.乙科总体的标准差及平均数都居中
C.丙科总体的平均数最小D.甲科总体的标准差最小

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若直线l过抛物线x2=-8y的焦点F,且与双曲线$\frac{x^2}{9}-\frac{y^2}{3}=1$在一、三象限的渐近线平行,则直线l截圆${({x-4\sqrt{3}})^2}+{y^2}=4$所得的弦长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)若cos$({\frac{π}{4}+x})$=$\frac{3}{5}$,$\frac{17}{12}$π<x<$\frac{7}{4}$π,求$\frac{{sin2x+2si{n^2}x}}{1-tanx}$的值.
(2)已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1(x∈R),若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为2,过右焦点F作直线交该双曲线于A、B两点,P为x轴上一点,且|PA|=|PB|,若|AB|=8,则|FP|=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.由1,2,3这三个数字组成的没有重复数字的三位自然数共有(  )
A.6个B.8个C.12个D.15个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.按照国家规定,某种大米质量(单位:kg)必须服从正态分布ξ~N(10,σ2),根据检测结果可知P(9.9≤ξ≤10.1)=0.96,某公司为每位职工购买一袋这种包装的大米作为福利,若该公司有2000名职工,则分发到的大米质量在9.9kg以下的职工数大约为40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽80名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从31~40这10个数中取的数是39,则在第1小组1~10中随机抽到的数是9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算机随机产生0到9之间取整数的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中,再以三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数:
807  966  191  925  271  932  812  458  569  683
489  257  394  027  556  488  730  113  537  741
根据以上数据,估计该运动员三次投篮恰好有两次命中的概率为(  )
A.0.20B.0.25C.0.30D.0.35

查看答案和解析>>

同步练习册答案