精英家教网 > 高中数学 > 题目详情
10.求下列各式的值:
(1)log525;
(2)log2$\frac{1}{16}$;
(3)lg1000;
(4)lg0.001.

分析 直接利用对数的运算法则化简求解即可.

解答 解:(1)log525=2;
(2)log2$\frac{1}{16}$=-4;
(3)lg1000=3;
(4)lg0.001=-3.

点评 本题考查对数的运算法则的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)${\;}^{\frac{1}{2}}$,c=logπ($\root{3}{e}$),则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求函数y=($\sqrt{2}$)${\;}^{\frac{1}{x}}$的定义域、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.己知角α的终边经过点(-1,$\sqrt{3}$),则对函数f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正确的是(  )
A.对称中心为($\frac{11}{12}$π,0)
B.函数y=sin2x向左平移$\frac{π}{3}$个单位可得到f(x)
C.f(x)在区间(-$\frac{π}{3}$,$\frac{π}{6}$)上递增
D.y=f(x)在[-$\frac{5}{6}π$,0]上有三个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若1og9[1og3(1og2x)]=0,则x${\;}^{-\frac{1}{3}}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:$\frac{x}{m}$+$\frac{y}{4-m}$=1(m≠0,m≠4).
(1)若直线l的斜率等于2,求m的值;
(2)若直线l不经过第四象限,求m的取值范围;
(3)若直线l与两坐标轴的正半轴围成的三角形的面积最大,求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数a、b满足等式($\frac{1}{2}$)a=($\frac{1}{3}$)b,给出下列五个关系式:
①0<b<a;
②a<b<0;
③0<a<b;
④b<a<0;
⑤a=b=0,
其中不可能成立的关系式有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a>0,b>0,且a+b=2,
(1)求证:$\sqrt{a+1}+\sqrt{b+1}≤2\sqrt{2}$;
(2)求$\frac{2}{a}+\frac{9}{2b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数中,表示同一个函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{x}$B.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{|x|}$)2
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x+1}•\sqrt{x-1}$,g(x)=$\sqrt{{x}^{2}-1}$

查看答案和解析>>

同步练习册答案