精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2
x+1
x-1
+log2(x-1)+log2(p-x).
(1)求函数f(x)的定义域;
(2)求函数f(x)的值域.
考点:对数函数的图像与性质,对数的运算性质
专题:函数的性质及应用
分析:(1)由题意解不等式组,求出即可,(2)分别讨论当1<p<3时,当p≥3时的情况,从而求出函数的值域.
解答: 解:(1)由题意得:
x+1
x-1
>0
x-1>0
p-x>
,解得:1<x<p,
∴函数f(x)的定义域为(1,p).
(2)①当
p-1
2
<1
p>1
,即1<p<3时,t在(1,p)上单调减,g(p)<t<g(1),即0<t<2p-2,
∴f(x)<1+log2(p-1),函数f(x)的值域为(-∞,1+log2(p-1));
②当
1≤
p-1
2
p+1
2
p>1
即p≥3时,g(p)<t≤g(
p-1
2
)
,即0<t≤
(p+1)2
4

∴f(x)≤2log2(p+1)-2,函数f(x)的值域为(-∞,2log2(p+1)-2).
综上:当1<p<3时,函数f(x)的值域为(-∞,1+log2(p-1));
当p≥3时,函数f(x)的值域为(-∞,2log2(p+1)-2)
点评:本题考查了对数函数的图象及性质,考查分类讨论思想,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x-1

(1)利用函数单调性的定义判断函数在区间[2,6]上的单调性;
(2)求函数在区间[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax3-bx+2,且f(t)=1,求f(-t)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg[32x+2•6x-3•22x+1],求使f(x)>0成立的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1)-loga(1-x),a>0且a≠1.
(1)求f(x)的定义域;    
(2)判断f(x)的奇偶性并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式
(1)
x+5
x-8
≤0;
(2)0<x2-x-2<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=x2-(k2+4)x-2k2-12,当抛物线与x轴的两交点间的距离最小时,求出此时k的值并求出最小的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(1)0.25×(
1
2
-4-4÷(
5
-1)0-(
1
16
 -
1
2

(2)lg25+lg2•lg50+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”.给出下列函数:
①f(x)=sinx-cosx;
②f(x)=
2
(sinx+cosx);
③f(x)=
2
sinx+2;
④f(x)=sinx.
其中“互为生成函数”的是
 

查看答案和解析>>

同步练习册答案