分析 由解析式求出函数f(x)的定义域,化简f(-x)由函数奇偶性定义,判断出f(x)的奇偶性,判断出f(x)的单调性,由奇偶性和单调性转化不等式,即可求出答案.
解答 解:由题意得,函数f(x)定义域是{x|x≠0},
∵f(-x)=log${\;}_{\frac{1}{2}}$(|-x|)+$\frac{1}{{(-x)}^{2}+1}$=log${\;}_{\frac{1}{2}}$(|x|)+$\frac{1}{{x}^{2}+1}$=f(x),
∴函数f(x)是偶函数,
∵偶函数f(x)在(0,+∞)上单调递减,f(x)>f(2x-1)
∴|x|<|2x-1|,解得$x<\frac{1}{3}或x>1$,
∴不等式的解集是$(-∞,\frac{1}{3})∪(1,+∞)$,
故答案为:$(-∞,\frac{1}{3})∪(1,+∞)$.
点评 本题考查对数函数的奇偶性和单调性的综合应用,以及转化思想,考查化简、变形能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 购买金额 | 频数 | 频率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.3 |
| (2500,3000] | y | q |
| 合计 | 100 | 1.00 |
| 女顾客 | 男顾客 | 合计 | |
| 购物金额在2000元以上 | 35 | ||
| 购物金额在2000元以下 | 20 | ||
| 合计 | 100 |
| P(K2≥k) | 0.01 | 0.05 | 0.025 | 0.01 |
| k | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a为任意实数 | B. | a=f′(3) | C. | a>f′(3) | D. | a<f′(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com