分析 (1)求出函数的导函数,对二次函数中参数a进行分类讨论,判断函数的单调区间;
(2)根据(1),得出f(x0)的最大值,问题可转化为对任意的a∈(-2,0],不等式2mea(a+1)-a2+-4a-2>0都成立,构造函数h(a)=2mea(a+1)-a2+-4a-2,根据题意得出m的范围,由h(0)>0得m>1,且h(-2)≥0得m≤e2,利用导函数,对m进行区间内讨论,求出m的范围.
解答 解:(I)f(x)=lnx+x2-2ax+1,
f'(x)=$\frac{1}{x}$+2x-2a=$\frac{2{x}^{2}-2ax+1}{x}$,
令g(x)=2x2-2ax+1,
(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;
(ii)当0<a$≤\sqrt{2}$时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;
(iii)当a>$\sqrt{2}$时,x在($\frac{a-\sqrt{{a}^{2}-2}}{2}$,$\frac{a+\sqrt{{a}^{2}-2}}{2}$)时,g(x)<0,函数f(x)单调递减;
在区间(0,$\frac{a-\sqrt{{a}^{2}-2}}{2}$)和($\frac{a+\sqrt{{a}^{2}-2}}{2}$,+∞)时,g(x)>0,函数f(x)单调递增;
(II)由(I)知当a∈(-2,0],时,函数f(x)在区间(0,1]上单调递增,
所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2-2a,对任意的a∈(-2,0],
都存在x0∈(0,1],使得不等式a∈(-2,0],2mea(a+1)+f(x0)>a2+2a+4成立,
等价于对任意的a∈(-2,0],不等式2mea(a+1)-a2+-4a-2>0都成立,
记h(a)=2mea(a+1)-a2+-4a-2,由h(0)>0得m>1,且h(-2)≥0得m≤e2,
h'(a)=2(a+2)(mea-1)=0,
∴a=-2或a=-lnm,
∵a∈(-2,0],
∴2(a+2)>0,
①当1<m<e2时,-lnm∈(-2,0),且a∈(-2,-lnm)时,h'(a)<0,
a∈(-lnm,0)时,h'(a)>0,所以h(a)最小值为h(-lnm)=lnm-(2-lnm)>0,
所以a∈(-2,-lnm)时,h(a)>0恒成立;
②当m=e2时,h'(a)=2(a+2)(ea+2-1),因为a∈(-2,0],所以h'(a)>0,
此时单调递增,且h(-2)=0,
所以a∈(-2,0],时,h(a)>0恒成立;
综上,m的取值范围是(1,e2].
点评 考查了导函数的应用和利用构造函数的方法,对存在问题进行转化,根据导函数解决实际问题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | [0,1] | C. | [1,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 常喝 | 不常喝 | 合计 | |
| 肥胖 | 6 | 2 | 8 |
| 不肥胖 | 4 | 18 | 22 |
| 合计 | 10 | 20 | 30 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 男 | 女 | 总计 | |
| 需要帮助 | 40 | m | 70 |
| 不需要帮助 | n | 270 | s |
| 总计 | 200 | t | 500 |
| y1 | y2 | 总计 | |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| 总计 | a+c | b+d | a+b+c+d |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com