如图,在平面直角坐标系xOy中,M、N分别是椭圆
+
=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.
(1) 若直线PA平分线段MN,求k的值;
(2) 当k=2时,求点P到直线AB的距离d;
(3) 对任意k>0,求证:PA⊥PB.
(1) 解:由题设知,a=2,b=
,故M(-2,0),N(0,-
),所以线段MN中点的坐标为
.由于直线PA平分线段MN,故直线PA过线段MN的中点.又直线PA过坐标原点,所以k=
=
.
(2) 解:将直线PA的方程y=2x代入椭圆方程
+
=1,解得x=±
,因此P
,A
.于是C
,直线AC的斜率为
=1,故直线AB的方程为x-y-
=0.因此,d=![]()
(3) 证明:设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0),设直线PA、PB、AB的斜率分别为k、k1、k2.因为C在直线AB上,所以k2=
=
=
.从而k1k+1=2k1k2+1=2·
+1=
+1=
=0.
因此k1k=-1,所以PA⊥PB.
科目:高中数学 来源: 题型:
已知双曲线方程是x2-
=1,过定点P(2,1)作直线交双曲线于P1、P2两点,并使P(2,1)为P1P2的中点,则此直线方程是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
+
=1(a>b>0)的离心率为
,短轴的一个端点为M(0,1),直线l:y=kx-
与椭圆相交于不同的两点A、B.
(1) 若AB=
,求k的值;
(2) 求证:不论k取何值,以AB为直径的圆恒过点M.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com