精英家教网 > 高中数学 > 题目详情
3.秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值为(  )
A.6B.5C.4D.3

分析 模拟程序的运行过程,依次写出每次循环得到的s,k的值,由题意可得5>n≥4,即可得解输入n的值.

解答 解:模拟程序的运行,可得
x=3,k=0,s=0,a=4
s=4,k=1
不满足条件k>n,执行循环体,a=4,s=16,k=2
不满足条件k>n,执行循环体,a=4,s=52,k=3
不满足条件k>n,执行循环体,a=4,s=160,k=4
不满足条件k>n,执行循环体,a=4,s=484,k=5
由题意,此时应该满足条件k>n,退出循环,输出s的值为484,
可得:5>n≥4,所以输入n的值为4.
故选:C.

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某加油站工作人员根据以往该加油站的销售情况,绘制了该加油站日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于40吨,另一天的日销售量低于40吨的概率;
(2)用ξ表示未来3天日销售量不低于40吨的天数,求随机变量ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC三个顶点坐标为A(0,1),B(0,-1),C(-2,1).
(I)求AC边中线所在直线方程;
(II)求△ABC的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的体积为(  )
A.16πB.C.$\frac{16}{3}$πD.$\frac{8}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是等差数列,其前n项和为Sn,数列{bn}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.
(1)求数列{an}和{bn}的通项公式;
(2)令cn=$\left\{\begin{array}{l}{2,n为奇数}\\{\frac{-2{a}_{n}}{{b}_{n}},n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从某校高三上学期期末数学考试成绩中,随机抽取了60名学生的成绩得到如图所示的频率分布直方图:
(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(2)若用分层抽样的方法从分数在[30,50)和[130,150]的学生中共抽取6人,该6人中成绩在[130,150]的有几人?
(3)在(2)抽取的6人中,随机抽取3人,计分数在[130,150]内的人数为ξ,求期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在集合M={x|0<x≤5}中随机取一个元素,恰使函数$y={log_{\frac{1}{2}}}x$大于1的概率为(  )
A.$\frac{4}{5}$B.$\frac{9}{10}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不等式组$\left\{\begin{array}{l}{x+y-3≥0}\\{y≤kx+3}\\{0≤x≤2}\end{array}\right.$表示的平面区域是一个锐角三角形,则实数k的取值范围是(  )
A.(-∞,-1)B.(-1,0)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:2017届山东潍坊临朐县高三10月月考数学(理)试卷(解析版) 题型:填空题

已知上的不间断函数满足:①当时,恒成立;②对任意的都有.又函数满足:对任意的,都有成立,当时,.若关于的不等式,对于恒成立,则的取值范围为____________.

查看答案和解析>>

同步练习册答案