精英家教网 > 高中数学 > 题目详情
4.广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2016年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.
(I)计算这40名广场舞者中年龄分布在[40,70)的人数;
(II)估计这40名广场舞者年龄的众数和中位数;
(III)若从年龄在[20,40)中的广场舞者中任取2名,求这两名广场舞者中恰有一人年龄在[30,40)的概率.

分析 (1)由频率分布直方图能求出这40名广场舞者中年龄分布在[40,70)的人数.
(2)由直方图能求出这组数据的众数和中位数.
(3)由直方图可知,年龄在[20,30)有2人,分别记为a1,a2,在[30,40)有4人,分别记为b1,b2,b3,b4,利用列举法能求出从这6人中任选两人,这两名广场舞者中恰有一人年龄在[30,40)的概率.

解答 解:(1)由表中数据知,
这40名广场舞者中年龄分布在[40,70)的人数为(0.02+0.03+0.025)×10×40=30
(2)由直方图可知这组数据的众数为55
因为(0.005+0.01+0.02+0.015)×10=0.5,
故中位数为55.
(3)由直方图可知,年龄在[20,30)有2人,分别记为a1,a2
在[30,40)有4人,分别记为b1,b2,b3,b4
现从这6人中任选两人,共有如下15种选法:
(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),
(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),
(b2,b3),(b2,b4),(b3,b4),
其中恰有1人在[30,40)有8种,
故这两名广场舞者中恰有一人年龄在[30,40)的概率为p=$\frac{8}{15}$.

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若0<α<2π且cosα≤$\frac{1}{2}$,sinα>$\frac{\sqrt{2}}{2}$,则角α的取值范围是(  )
A.[$\frac{π}{3}$,$\frac{3}{4}$π)B.($\frac{π}{3}$,$\frac{3}{4}$π]C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{3}$,$\frac{3}{4}$π)∪($\frac{π}{4}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△OMN中,点A在OM上,点B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则终点P落在四边形ABNM内(含边界)时,$\frac{y+x+2}{x+1}$的取值范围为[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表:
组别PM2.5浓度(微克/立方米)频数(天)频率
第一组(0,25]30.15
第二组(25,50]120.6
第三组(50,75]30.15
第四组(75,100]20.1
(1)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.
①求频率分布直方图中a的值;
②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(2)将频率视为概率,对于2016年的某3天,记这3天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α为第三象限角,且$sin({α-\frac{7π}{2}})=-\frac{1}{5}$,则$\frac{{sin({π-α})cos({2π-α})tan({\frac{3π}{2}-α})}}{{cot({-3π-α})sin({-\frac{π}{2}-α})}}$=-$\frac{2\sqrt{6}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$y=2cos({\frac{1}{2}x+\frac{π}{3}})$图象的一个对称中心为(  )
A.$({\frac{4π}{3},0})$B.$({\frac{π}{2},0})$C.$({\frac{π}{3},0})$D.$({\frac{π}{6},0})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,A=$\frac{π}{3}$,AB=2,且△ABC的面积为$\frac{\sqrt{3}}{2}$,则边AC的长为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,一个几何体的三视图如图所示(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为a的正方形,则其外接球的体积为(  )
A.$\frac{{\sqrt{3}}}{2}π{a^3}$B.$\frac{{\sqrt{3}}}{2}a$C.$\frac{1}{2}{a^3}$D.$\frac{1}{2}π{a^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥A-BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分别在线段AB,AC上,AP=3PB,AQ=2QC,M是BD的中点.
(1)证明:DQ∥平面CPM;
(2)若二面角C-AB-D的大小为$\frac{π}{3}$,求tan∠BDC.

查看答案和解析>>

同步练习册答案