精英家教网 > 高中数学 > 题目详情
11.二项展开式(2x-$\frac{1}{{x}^{2}}$)6中,常数项为(  )
A.240B.-240C.15D.不存在

分析 通项公式:Tr+1=26-r${∁}_{6}^{r}$x6-3r.令6-3r=0,解得r即可得出.

解答 解:二项展开式(2x-$\frac{1}{{x}^{2}}$)6中,通项公式:Tr+1=${∁}_{6}^{r}(2x)^{6-r}(-\frac{1}{{x}^{2}})^{r}$=26-r${∁}_{6}^{r}$x6-3r
令6-3r=0,解得r=2.
∴常数项为${2}^{4}{∁}_{6}^{2}$=240.
故选:A.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=3sin(ωx+$\frac{π}{6}$)-2(ω>0)的图象向右平移$\frac{2π}{3}$个单位后与原图象重合,则ω的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面内两个不共线的向量,$\overrightarrow{a}$=x$\overrightarrow{e}$1-3$\overrightarrow{e}$2(x∈R),$\overrightarrow{b}$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{x+1},x≥3\\-2x+8,x<3\end{array}$,则f(f(-2))=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{e^x}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(a∈R)有四个相异的实数根,则a的取值范围是(  )
A.(-1,$\frac{{{e^2}-1}}{2e-1}$)B.(1,+∞)C.($\frac{{{e^2}-1}}{2e-1}$,2)D.($\frac{{{e^2}-1}}{2e-1}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}首项和公差都是$\frac{2}{3}$,记{an}的前n项和为Sn,等比数列{bn}各项均为正数,公比为q,记{bn}的前n项和为Tn
(I)写出Si(i=1,2,3,4,5)构成的集合A;
(Ⅱ)若将Sn中的整数项按从小到大的顺序构成数列{cn},求{cn}的一个通项公式;
(Ⅲ)若q为正整数,问是否存在大于1的正整数k,使得Tk,T2k同时为(1)中集合A的元素?若存在,写出所有符合条件的{bn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机变量X~N(2,32),若P(X≤0)=0.1,则P(2≤X<4)=(  )
A.0.1B.0.2C.0.4D.0.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{an}的前n项和记为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“G数列”.
(1)若数列{an}的通项公式an=2n,判断{an}是否为“G数列”;
(2)等差数列{an},公差d≠0,a1=2d,求证:{an}是“G数列”;
(3)设Sn与an满足(1-q)Sn+an+1=r,其中a1=2t>0,q≠0.若{an}是“G数列”,求q,r满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知△ABC的外接圆方程为x2+y2=5,直线AC:y=-1(点A在第四象限),设AB中点为M,AC中点为N,若|AN|=|MN|,则直线AB的斜率为-$\frac{8}{7}$.

查看答案和解析>>

同步练习册答案