分析 函数f(x)=3sin(ωx+$\frac{π}{6}$)-2(ω>0)的图象向右平移$\frac{2π}{3}$个单位后与原图象重合,可判断出$\frac{2π}{3}$是周期的整数倍,由此求出ω的表达式,判断出它的最小值.
解答 解:∵函数f(x)=3sin(ωx+$\frac{π}{6}$)-2(ω>0)的图象向右平移$\frac{2π}{3}$个单位后与原图象重合,
∴$\frac{2π}{3}$=n×$\frac{2π}{ω}$,n∈z
∴ω=3n,n∈z
又ω>0,故其最小值是3.
故答案为:3.
点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,解题的关键是判断出函数图象的特征及此特征与解析式中系数的关系,由此得出关于参数的方程求出参数的值,本题重点是判断出$\frac{2π}{3}$是周期的整数倍,则问题得解,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3}^{n+1}-4n-3}{2}$ | B. | $\frac{{3}^{n}-2n-1}{2}$ | C. | $\frac{{3}^{n}-2n+1}{2}$ | D. | 3n+1-2n-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com