精英家教网 > 高中数学 > 题目详情
6.不等式x2-4|x|-5<0的解集是{x|-$\sqrt{5}$<x<$\sqrt{5}$}..

分析 把原不等式中的x2变为|x|2,则不等式变为关于|x|的一元二次不等式,求出解集得到关于x的绝对值不等式,解出绝对值不等式即可得到x的解集.

解答 解:原不等式化为|x|2-4|x|-5<0
因式分解得(|x|-5)(|x|+1)<0
因为|x|+1>0,所以|x|-5<0即|x|<5
解得:-$\sqrt{5}$<x<$\sqrt{5}$.
故答案为:{x|-$\sqrt{5}$<x<$\sqrt{5}$}.

点评 本题考查一元二次不等式的解法,解题的突破点是把原不等式中的x2变为|x|2,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知α∈(0,$\frac{π}{2}$],求${∫}_{0}^{α}$(cosx-sinx)dx的最大值及取得最大值时α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=511,4an=an-1-3(n≥2).
(1)求证:(an+1)是等比数列;
(2)令bn=|log2(an+1)|,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}为正项数列,其前n项和为Sn,且Sn满足$4{S_n}={({a_n}+1)^2}$,
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=3sin(ωx+$\frac{π}{6}$)-2(ω>0)的图象向右平移$\frac{2π}{3}$个单位后与原图象重合,则ω的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,曲线C的参数方程是$\left\{\begin{array}{l}{x=\frac{ta{n}^{2}α}{4}}\\{y=tanα}\end{array}\right.$(α是参数),直线l的参数方程是$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t是参数).
(1)求曲线C和直线l的普通方程,并指出曲线C的曲线类型;
(2)若直线l和曲线C相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足(1+i)z=1-i(i为虚数单位),则|z|=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知公差不为零的等差数列{an}(n≥3)的最大项为正数.若将数列{an}中的项重新排列得到公比为q的等比数列{bn}.则下列说法正确的是(  )
A.q>0时,数列{bn}中的项都是正数B.数列{an}中一定存在的为负数的项
C.数列{an}中至少有三项是正数D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}首项和公差都是$\frac{2}{3}$,记{an}的前n项和为Sn,等比数列{bn}各项均为正数,公比为q,记{bn}的前n项和为Tn
(I)写出Si(i=1,2,3,4,5)构成的集合A;
(Ⅱ)若将Sn中的整数项按从小到大的顺序构成数列{cn},求{cn}的一个通项公式;
(Ⅲ)若q为正整数,问是否存在大于1的正整数k,使得Tk,T2k同时为(1)中集合A的元素?若存在,写出所有符合条件的{bn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案