精英家教网 > 高中数学 > 题目详情
2.设$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面内两个不共线的向量,$\overrightarrow{a}$=x$\overrightarrow{e}$1-3$\overrightarrow{e}$2(x∈R),$\overrightarrow{b}$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为-6.

分析 利用向量共线定理、向量共面定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴存在实数λ使得$\overrightarrow{a}$=$λ\overrightarrow{b}$.
∴x$\overrightarrow{e}$1-3$\overrightarrow{e}$2=λ(2$\overrightarrow{e}$1+$\overrightarrow{e}$2),
∴$\left\{\begin{array}{l}{x=2λ}\\{-3=λ}\end{array}\right.$,解得x=-6.
故答案为:-6.

点评 本题考查了向量共线定理、向量共面定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.数列{an}中,a1=1,an+1=3an+4,则数列{an}的前n项和等于(  )
A.$\frac{{3}^{n+1}-4n-3}{2}$B.$\frac{{3}^{n}-2n-1}{2}$C.$\frac{{3}^{n}-2n+1}{2}$D.3n+1-2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的参数方程为:$\left\{\begin{array}{l}{x=tcosφ}\\{y=-1+tsinφ}\end{array}\right.$ (t为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,曲线C的极坐标方程为ρ=2sin(θ+$\frac{π}{3}$)
(I)求直线l和曲线C的普通方程;
(Ⅱ)在直角坐标系中,过点B(0,1)作直线l的垂线,垂足为H,试以φ为参数,求动点H轨迹的参数方程,并指出轨迹表示的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列{an}的前n项和为Sn,且满足a4=S3,a9=a3+a4
(1)求数列{an}的通项公式;
(2)若akak+1=ak+2,求正整数k的值;
(3)是否存在正整数k,使得$\frac{{{S_{2k}}}}{{{S_{2k-1}}}}$恰好为数列{an}的一项?若存在,求出所有满足条件的正整数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x>1,则logx9+log27x的最小值是$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=aex-1-x2+bln(x+1).
(1)当a=0,b=1时,求函数f(x)的单调区间;
(2)设函数f(x)在点(0,f(0))处的切线方程为x-ey+1=0,当x(-1,1]时,求证:f(x)<$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,复数z=$\frac{m}{1-i}$(m∈R),若|z|=$\int_0^π{(sinx-\frac{1}{π}})dx$,则m的值为(  )
A.$±\sqrt{2}$B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二项展开式(2x-$\frac{1}{{x}^{2}}$)6中,常数项为(  )
A.240B.-240C.15D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)为奇函数,且在(0,+∞)上单调递增,则以下结论正确的是(  )
A.函数|f(x)|为偶函数,且在(-∞,0)上单调递增
B.函数|f(x)|为奇函数,且在(-∞,0)上单调递增
C.函数f(|x|)为奇函数,且在(0,+∞)上单调递增
D.函数f(|x|)为偶函数,且在(0,+∞)上单调递增

查看答案和解析>>

同步练习册答案