分析 利用向量共线定理、向量共面定理即可得出.
解答 解:∵$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴存在实数λ使得$\overrightarrow{a}$=$λ\overrightarrow{b}$.
∴x$\overrightarrow{e}$1-3$\overrightarrow{e}$2=λ(2$\overrightarrow{e}$1+$\overrightarrow{e}$2),
∴$\left\{\begin{array}{l}{x=2λ}\\{-3=λ}\end{array}\right.$,解得x=-6.
故答案为:-6.
点评 本题考查了向量共线定理、向量共面定理,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3}^{n+1}-4n-3}{2}$ | B. | $\frac{{3}^{n}-2n-1}{2}$ | C. | $\frac{{3}^{n}-2n+1}{2}$ | D. | 3n+1-2n-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $±\sqrt{2}$ | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数|f(x)|为偶函数,且在(-∞,0)上单调递增 | |
| B. | 函数|f(x)|为奇函数,且在(-∞,0)上单调递增 | |
| C. | 函数f(|x|)为奇函数,且在(0,+∞)上单调递增 | |
| D. | 函数f(|x|)为偶函数,且在(0,+∞)上单调递增 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com