精英家教网 > 高中数学 > 题目详情
17.已知x>1,则logx9+log27x的最小值是$\frac{{2\sqrt{6}}}{3}$.

分析 直接利用基本不等式,即可求出logx9+log27x的最小值.

解答 解:∵x>1,
∴logx9>0,log27x>0,
∴${log_x}9+{log_{27}}x=\frac{2lg3}{lgx}+\frac{lgx}{3lg3}≥2\sqrt{\frac{2lg3}{lgx}•\frac{lgx}{3lg3}}=\frac{{2\sqrt{6}}}{3}$(当且仅当$\frac{2lg3}{lgx}=\frac{lgx}{3lg3}$,即$x={3^{\sqrt{6}}}$取等号).
故答案为:$\frac{{2\sqrt{6}}}{3}$.

点评 本题考查利用基本不等式求logx9+log27x的最小值,考查学生的计算能力,正确运用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知递增的等差数列{an}(n∈N*)的首项a1=1,且a1,a2,a4成等比数列,则数列{an}的通项公式an=n;a4+a8+a12+…+a4n+4=2n2+6n+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\frac{x-1}{x-3}$,g(x)=$\frac{x-3}{\sqrt{x-1}}$,则f(x)•g(x)=$\sqrt{x-1}$,其中x>1且x≠3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知正方体ABCD-A1B1C1D1,点E,F,G分别是线段DC,D1D和D1B上的动点,给出下列结论:
①对于任意给定的点E,存在点F,使得AF⊥A1E;
②对于任意给定的点F,存在点E,使得AF⊥A1E;
③对于任意给定的点G,存在点F,使得AF⊥B1G;
④对于任意给定的点F,存在点G,使得AF⊥B1G.
其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.将下列参数方程(t为参数)化成普通方程,并说明表示什么曲线:
(1)$\left\{\begin{array}{l}{x=\sqrt{{t}^{2}+2t+3}}\\{y=\sqrt{{t}^{2}+2t+2}}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=sint+cost}\\{y=sintcost}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x=t+\frac{1}{t}-1}\\{y=t-\frac{1}{t}+1}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{x=\frac{1-{t}^{2}}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$;
(5)$\left\{\begin{array}{l}{x=\frac{1-t}{1+t}}\\{y=\frac{2t}{1+t}}\end{array}\right.$;
(6)$\left\{\begin{array}{l}{x=\frac{2}{1+{t}^{2}}}\\{y=\frac{2t}{1+{t}^{2}}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$\overrightarrow{e}$1,$\overrightarrow{e}$2是平面内两个不共线的向量,$\overrightarrow{a}$=x$\overrightarrow{e}$1-3$\overrightarrow{e}$2(x∈R),$\overrightarrow{b}$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{a}{x}$-1+lnx,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{e^x}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(a∈R)有四个相异的实数根,则a的取值范围是(  )
A.(-1,$\frac{{{e^2}-1}}{2e-1}$)B.(1,+∞)C.($\frac{{{e^2}-1}}{2e-1}$,2)D.($\frac{{{e^2}-1}}{2e-1}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.从0、1、3、5、7中取出不同的三个数作系数.
(1)可以组成多少个不同的一元二次方程ax2+bx+c=0;
(2)在所组成的一元二次方程中,有实根的方程有多少个?

查看答案和解析>>

同步练习册答案