精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{a}{x}$-1+lnx,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围为(-∞,1].

分析 利用参数分离法进行转化,构造函数求出函数的单调性和极值即可得到结论.

解答 解:若存在x0>0,使得f(x0)≤0有解,
则由f(x)=$\frac{a}{x}$-1+lnx≤0,即$\frac{a}{x}$≤1-lnx,
即a≤x-xlnx,设h(x)=x-xlnx,
则h′(x)=1-(lnx+x$•\frac{1}{x}$)=1-lnx-1=-lnx,
由h′(x)>0得-lnx>0,即lnx<0,得0<x<1,此时函数递增,
由h′(x)<0得-lnx<0,即lnx>0,得x>1,此时函数递减,
即当x=1时,函数h(x)取得极大值h(1)=1-ln1=1,
即h(x)≤1
若a≤x-xlnx,有解,则a≤1,
故答案为:(-∞,1]

点评 本题主要考查根的存在性性问题,利用参数分离法,构造函数求出函数的极值,注意本题是存在性问题,不是恒成立问题,注意两者的区别.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和Sn=1-5+9-13-21+…+(-1)n-1(4n-3),则S11=(  )
A.-21B.-19C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移$\frac{π}{3}$个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为(  )
A.x=$\frac{π}{6}$B.x=$\frac{5π}{12}$C.x=$\frac{π}{3}$D.x=$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x>1,则logx9+log27x的最小值是$\frac{{2\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和Sn=kn-1(k∈R),且{an}既不是等差数列,也不是等比数列,则k的取值集合是{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,复数z=$\frac{m}{1-i}$(m∈R),若|z|=$\int_0^π{(sinx-\frac{1}{π}})dx$,则m的值为(  )
A.$±\sqrt{2}$B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数y=f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$]上的最值;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,满足c=$\sqrt{3}$,f(C)=1且sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在(x3-$\frac{1}{x}}$)8的展开式中,其常数项的值为28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足:a1=a(a∈R且a>-1),(a1+1)(a2+1)…(an+1)=10${\;}^{{2}^{n}}$-1(n∈N*且n≥2).
(1)求数列{an}的通项公式;
(2)当a=9时,记cn=$\frac{1+lg[({a}_{1}+1)({a}_{2}+1)…({a}_{n}+1)]}{[lg({a}_{n+1}+1)-1]•[lg({a}_{n+2}+1)-1]}$,设数列{cn}的前n项和为Sn,求证:Sn<1.

查看答案和解析>>

同步练习册答案