分析 (1)分n=1,n=2,n≥3三种情况讨论,从而确定通项公式即可;
(2)可验证an+1=$1{0}^{{2}^{n-1}}$,(a1+1)(a2+1)…(an+1)=10${\;}^{{2}^{n}}$-1对任意n都成立,从而化简cn=$\frac{1+lg1{0}^{{2}^{n}-1}}{(lg1{0}^{{2}^{n}}-1)(lg1{0}^{{2}^{n+1}}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,从而证明得.
解答 解:(1)当n=1时,a1+1=a+1>0,
当n=2时,(a1+1)(a2+1)=103,
故a2+1=$\frac{1{0}^{3}}{a+1}$;
当n≥3时,(a1+1)(a2+1)…(an+1)=10${\;}^{{2}^{n}}$-1,
(a1+1)(a2+1)…(an-1+1)=$1{0}^{{2}^{n-1}-1}$,
∴an+1=$\frac{1{0}^{{2}^{n}-1}}{1{0}^{{2}^{n-1}-1}}$=$1{0}^{{2}^{n-1}}$;
故an=$\left\{\begin{array}{l}{a,n=1}\\{\frac{100}{a+1}-1,n=2}\\{1{0}^{{2}^{n-1}}-1,n≥3}\end{array}\right.$;
(2)证明:当a=9时,可验证an+1=$1{0}^{{2}^{n-1}}$,
(a1+1)(a2+1)…(an+1)=10${\;}^{{2}^{n}}$-1,
故cn=$\frac{1+lg[({a}_{1}+1)({a}_{2}+1)…({a}_{n}+1)]}{[lg({a}_{n+1}+1)-1]•[lg({a}_{n+2}+1)-1]}$
=$\frac{1+lg1{0}^{{2}^{n}-1}}{(lg1{0}^{{2}^{n}}-1)(lg1{0}^{{2}^{n+1}}-1)}$
=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$
=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,
故Sn=(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{7}$)+…+($\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$)
=1-$\frac{1}{{2}^{n+1}-1}$<1.证毕
点评 本题考查了等差数列与等比数列的性质应用及分类讨论的思想应用,同时考查了整体思想与裂项求和法的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | $\sqrt{19}$ | D. | $\sqrt{23}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com