精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{x+1},x≥3\\-2x+8,x<3\end{array}$,则f(f(-2))=$\sqrt{13}$.

分析 利用分段函数的表达式,利用代入法即可得到结论.

解答 解:由分段函数得f(-2)=-2×(-2)+8=4+8=12,
则f(12)=$\sqrt{12+1}$=$\sqrt{13}$,
即f(f(-2))=f(12)=$\sqrt{13}$,
故答案为:$\sqrt{13}$.

点评 本题主要考查函数值的计算,根据分段函数的表达式,直接代入是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项和为Sn,且满足a1=-1,an+1=2Sn,(n∈N*),则Sn=-3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.设数列{an}的前n项和为Sn,且满足a4=S3,a9=a3+a4
(1)求数列{an}的通项公式;
(2)若akak+1=ak+2,求正整数k的值;
(3)是否存在正整数k,使得$\frac{{{S_{2k}}}}{{{S_{2k-1}}}}$恰好为数列{an}的一项?若存在,求出所有满足条件的正整数k;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=aex-1-x2+bln(x+1).
(1)当a=0,b=1时,求函数f(x)的单调区间;
(2)设函数f(x)在点(0,f(0))处的切线方程为x-ey+1=0,当x(-1,1]时,求证:f(x)<$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i是虚数单位,复数z=$\frac{m}{1-i}$(m∈R),若|z|=$\int_0^π{(sinx-\frac{1}{π}})dx$,则m的值为(  )
A.$±\sqrt{2}$B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≤4}\\{y≥2}\\{\;}\end{array}\right.$,则目标函数z=2x+4y的最大值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二项展开式(2x-$\frac{1}{{x}^{2}}$)6中,常数项为(  )
A.240B.-240C.15D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=f(x),若在区间I内有且只有一个实数c(c∈I),使得f(c)=0成立,则称函数y=f(x)在区间I内具有唯一零点.
(1)判断函数f(x)=log2|x|在定义域内是否具有唯一零点,并说明理由;
(2)已知向量$\overrightarrow{m}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),$\overrightarrow{n}$=(sin2x,cos2x),x∈(0,π),证明f(x)=$\overrightarrow{m}•\overrightarrow{n}$+1在区间(0,π)内具有唯一零点;
(3)若函数f(x)=x2+2mx+2m在区间(-2,2)内具有唯一零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}首项为a1,公差为b1,等比数列{bn}首项为b1,公比为a1,其中a1,b1都是大于1的正整数,且a1<b1,b2<a3,对于任意的n∈N*,总存在m∈N*,使得am+5=bn成立,则an=7n-5.

查看答案和解析>>

同步练习册答案