精英家教网 > 高中数学 > 题目详情
4.若变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≤4}\\{y≥2}\\{\;}\end{array}\right.$,则目标函数z=2x+4y的最大值为(  )
A.10B.11C.12D.13

分析 作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图
由z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直线y=-$\frac{1}{2}$x+$\frac{z}{4}$,由图象可知当直线y=-$\frac{1}{2}$x+$\frac{z}{4}$经过点A时,
直线y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最大,此时z最大,
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{5}{2}}\end{array}\right.$,
即A($\frac{3}{2}$,$\frac{5}{2}$),
此时z=2×$\frac{3}{2}$+4×$\frac{5}{2}$=3+10=13,
故选:D.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}为正项数列,其前n项和为Sn,且Sn满足$4{S_n}={({a_n}+1)^2}$,
(Ⅰ)求证:数列{an}为等差数列;
(Ⅱ)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知公差不为零的等差数列{an}(n≥3)的最大项为正数.若将数列{an}中的项重新排列得到公比为q的等比数列{bn}.则下列说法正确的是(  )
A.q>0时,数列{bn}中的项都是正数B.数列{an}中一定存在的为负数的项
C.数列{an}中至少有三项是正数D.以上说法都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,四边形ABCD为直角梯形,BC∥AD,∠ADC=90°,BC=CD=$\frac{1}{2}$AD=1,PA=PD,E,F分别为线段AD,PC的中点.
(1)求证:PA∥平面BEF;
(2)若直线PC与AB所成的角为45°,求线段PE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}\sqrt{x+1},x≥3\\-2x+8,x<3\end{array}$,则f(f(-2))=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用2种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形中相邻矩形颜色不同的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}首项和公差都是$\frac{2}{3}$,记{an}的前n项和为Sn,等比数列{bn}各项均为正数,公比为q,记{bn}的前n项和为Tn
(I)写出Si(i=1,2,3,4,5)构成的集合A;
(Ⅱ)若将Sn中的整数项按从小到大的顺序构成数列{cn},求{cn}的一个通项公式;
(Ⅲ)若q为正整数,问是否存在大于1的正整数k,使得Tk,T2k同时为(1)中集合A的元素?若存在,写出所有符合条件的{bn}的通项公式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设当x=θ时,函数f(x)=2cosx-3sinx取得最小值,则tanθ等于(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用红、黄、蓝、绿4种颜色为一个五棱锥的六个顶点着色,要求每一条棱的两个端点着不同的颜色,则不同的着色方案共有 (  )种?
A.120B.140C.180D.240

查看答案和解析>>

同步练习册答案