【题目】[2019·武汉六中]袋子中有四个小球,分别写有“武、汉、军、运”四个字,从中任取一个小球,有放回抽取,直到取到“军”“运”二字就停止,用随机模拟的方法估计恰好在第三次停止的概率:利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“军、运、武、汉”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下16组随机数:
232 321 230 023 123 021 132 220
231 130 133 231 331 320 122 233
由此可以估计,恰好第三次就停止的概率为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,点A,B,C的坐标分别为A(cosα,sinα),B(2,0),C(0,2),α∈(0,π).
(1)若,求α的值;
(2)若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是从上下底面处在水平状态下的棱长为a的正方体ABCD﹣A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)·f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(,e)内有两个零点,求正实数a的取值范围;
(3)求证:当x>0时,.(说明:e是自然对数的底数,e=2.71828…)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·武邑中学]已知关于的一元二次方程,
(1)若一枚骰子掷两次所得点数分别是,,求方程有两根的概率;
(2)若,,求方程没有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)的离心率e= ,并且经过定点P( , ). (Ⅰ)求椭圆E的方程;
(Ⅱ)问是否存在直线y=﹣x+m,使直线与椭圆交于A、B两点,满足 = ,若存在求m值,若不存在说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com