精英家教网 > 高中数学 > 题目详情
15.根据所给条件求下列直线的方程:
(1)经过点Q(-1,3)且与直线x+2y-1=0垂直;
(2)经过点N(-1,3)且在x轴的截距与它在y轴上的截距的和为零.

分析 (1)利用相互垂直的直线斜率之间的关系、点斜式即得出.
(2)对直线的斜率分类讨论,利用截距式即可得出.

解答 解:(1)∵直线x+2y-1=0的斜率为$-\frac{1}{2}$,
∴所求直线的斜率为2,
故所求直线的方程为:y-3=2(x+1),化为2x-y+5=0.
(2)当直线过原点时,设直线方程为y=kx,
∵直线过点N(-1,3),∴k=-3.
此时直线方程为3x+y=0.
当直线不过原点时,设直线的方程为$\frac{x}{a}-\frac{y}{a}=1$,
∵直线过点N(-1,3),∴a=-4.
此时直线方程为x-y+4=0.
综上知,直线的方程为3x+y=0或x-y+4=0.

点评 本题考查了相互垂直的直线斜率之间的关系、点斜式、直线的截距,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知倾斜角为θ的直线l与直线m:x-2y+3=0平行,则sin2θ=(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$-\frac{4}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α∈(0,$\frac{π}{2}$),sinα=$\frac{{\sqrt{6}}}{3}$,则tanα=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.cos(-$\frac{79π}{6}$)的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过点P(1,1)作直线l,分别交x,y正半轴于A,B两点.
(1)若直线l与直线x-3y+1=0垂直,求直线l的方程;
(2)若直线l在y轴上的截距是直线l在x轴上截距的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.具有线性相关的两个随机变量x,y可用线性回归模型y=bx+a+e表示,通常e是随机变量,称为随机误差,它的均值E(e)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过A(4,-3),B(2,-1)作直线4x+3y-2=0的垂线l1,l2,则直线l1,l2间的距离为$\frac{14}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.△ABC中,∠A,∠B的对边分别为a,b,且∠A=30°,a=$\sqrt{2}$,b=2,那么满足条件的△ABC(  )
A.有一个解B.有两个解C.不能确定D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.作出数列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…,(-$\frac{1}{2}$)n,…的图象,并分析数列的增减性.

查看答案和解析>>

同步练习册答案