精英家教网 > 高中数学 > 题目详情
13.从椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点M向x轴作垂线,垂足恰为左焦点F1,点A、B是椭圆与x轴正半轴、y轴正半轴的交点,且AB∥OM,|F1A|=$\sqrt{2}+1$.
(1)求该椭圆的离心率;
(2)若P是该椭圆上的动点,右焦点为F2,求$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的取值范围.
(3)若直线y=kx+m与椭圆E有两个交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.

分析 (1)先计算PF1的长,再利用两直线平行得tan∠MOF1,最后在直角三角形MOF1中,找到a、b、c间的等式,从而求出离心率;
(2)由|F1A|=$\sqrt{2}+1$,可得a+c=$\sqrt{2}+1$,再由a=$\sqrt{2}$c,解得a,c,再求b,进而得到椭圆方程,设出P的坐标,运用向量的数量积的坐标表示,结合椭圆的范围,即可得到所求的最值,进而得到所求范围;
(3)设P(x1,y1),Q(x2,y2),则将直线与椭圆的方程联立,消去y,利用判别式以及韦达定理,通过数量积小于0,求出m、k的关系式,进一步求得实数m的取值范围.

解答 解:(1)设F1(-c,0),
将x=-c代入椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
得y=±$\frac{{b}^{2}}{a}$,
∴|MF1|=$\frac{{b}^{2}}{a}$,|OF1|=c,
∵AB∥OM,∴tan∠MOF1=tan∠BAO=$\frac{b}{a}$,
∴在直角三角形MOF1中,tan∠MOF1=$\frac{|M{F}_{1}|}{|O{F}_{1}|}$=$\frac{{b}^{2}}{ac}=\frac{b}{a}$,
∴b=c,则a=$\sqrt{2}$c,
∵|F1A|=$\sqrt{2}+1$=a+c=$(\sqrt{2}+1)c$,
∴c=1,a=$\sqrt{2}$,则e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$;
(2)由|F1A|=$\sqrt{2}+1$,
可得a+c=$\sqrt{2}+1$,
又a=$\sqrt{2}$c,解得a=$\sqrt{2}$,c=1,b=1,
则椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$.
设P(m,n),可得m2+2n2=2,
又F1(-1,0),F2(1,0),
$\overrightarrow{P{F}_{1}}$=(-1-m,-n),$\overrightarrow{P{F}_{2}}$=(1-m,-n),
即有$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-1-m)(1-m)+n2
=m2+n2-1=1-n2
由-1≤n≤1,
可得n=0,取得最大值1,n=±1时,取得最小值0.
则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$ 的取值范围是[0,1];
(3)设P(x1,y1),Q(x2,y2),则将直线与椭圆的方程联立得:
$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$,消去y,得:(2k2+1)x2+4kmx+2m2-2=0,△>0,m2<2k2+1…①
 x1+x2=-$\frac{4km}{2{k}^{2}+1}$,x1x2=$\frac{2{m}^{2}-2}{2{k}^{2}+1}$,
∵O在以PQ为直径的圆的内部,故$\overrightarrow{OP}•\overrightarrow{OQ}$<0,即x1x2+y1y2<0,
而y1y2=(kx1+m)(kx2+m)=${k}^{2}{x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$=$\frac{{m}^{2}-2{k}^{2}}{2{k}^{2}+1}$,
由x1x2+y1y2=$\frac{2{m}^{2}-2}{2{k}^{2}+1}+\frac{{m}^{2}-2{k}^{2}}{2{k}^{2}+1}$<0,
得:m2<$\frac{2{k}^{2}+2}{3}$,∴m2<$\frac{2}{3}$,满足①,
故m的取值范围是(-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$).

点评 本题考查椭圆的方程和性质,考查椭圆离心率的求法,注意运用两直线平行的条件,考查平面向量的数量积的范围,注意运用坐标表示,结合椭圆的范围,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图所示,凸五面体ABCED中,DA⊥平面ABC,EC⊥平面ABC,AC=AD=AB=1,
BC=$\sqrt{2}$,F为BE的中点.
(I)若CE=2,
求证:①DF∥平面ABC;
②平面BDE⊥平面BCE;
(II)若动点E使得凸多面体ABCED体积为$\frac{1}{3}$,求线段CE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将4个不同的球随机地放入3个盒子中,则每个盒子中至少有一个球的概率等于$\frac{4}{9}$.(用分数作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos(3x+$\frac{π}{3}$),其中x∈[$\frac{π}{6}$,m],若f(x)的值域是[-1,-$\frac{\sqrt{3}}{2}$],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{i}^{2}}{2i-1}$(i为虚数单位)的虚部是(  )
A.$\frac{1}{5}$iB.$\frac{2}{5}$C.-$\frac{1}{5}$iD.-$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\frac{6}{x}-{log_2}x$,在下列区间中,包含f(x)的零点的区间是(  )
A.( 0,1)B.( 1,2)C.( 2,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.观察下列等式:
$\begin{array}{l}(1+1)=2×1\\(2+1)(2+2)={2^2}×1×3\\(3+1)(3+2)(3+3)={2^3}×1×3×5\end{array}$

照此规律,第n个等式可为(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a∈R.命题p:函数f(x)=$\sqrt{{x^2}-2x+a}$的定义域为实数集R,命题q:函数g(x)=2x-a(x≤2)的值域为正实数集的子集.若“p∨q”是真命题,且“p∧q”是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且满足Sn=2an-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设函数f(x)=($\frac{1}{2}$)x,数列{bn}满足条件b1=2,f(bn+1)=$\frac{1}{f(-3-{b}_{n})}$,(n∈N*),若cn=$\frac{{b}_{n}}{{a}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案