精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足Sn=2an+n(n∈N*).
(Ⅰ)求数列{an}的前三项a1,a2,a3
(Ⅱ)求证:数列{an-1}为等比数列,并求出{an}的通项公式.
考点:等比数列的通项公式,数列的函数特性
专题:等差数列与等比数列
分析:(Ⅰ)依次令n=1,2,3,利用递推思想能求出数列{an}的前三项a1,a2,a3
(Ⅱ)由Sn=2an+n,可知当n≥2时,Sn-1=2an-1+n-1,两式相减整理即可证明数列{an-1}为等比数列,并能求出{an}的通项公式.
解答: (Ⅰ)解:∵Sn=2an+n(n∈N*).
∴a1=S1=2a1+1,
解得a1=-1,
S2=-1+a2=2a2+2,
解得a2=-3,
S3=-4+a3=2a3+3,
解得a3=-7.
(Ⅱ)证明:∵Sn=2an+n.
∴当n≥2时,Sn-1=2an-1+n-1.
两式相减可得,Sn-Sn-1=2an-2an-1+1
即an=2an-2an-1+1
∴an-1=2(an-1-1)
∵n=1时,S1=2a1+1
∴a1=-1,a1-1=-2
∴数列{an-1}是以-2为首项,以2为公比的等比数列,
an-1=-2n
∴an=1-2n
点评:本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
sinαcos2αtanα
cos(
π
2
-α)

(1)求f(α)的最大值; 
(2)若α是第三象限角,且sin(α+
π
2
)=-
3
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对一切实数x,当a<b时,二次函数f(x)=ax2+bx+c的值恒为非负数,则b-2a-
c
2
的最大值为(  )
A、0B、1C、2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,内角A,B,C的对边长分别是a,b,c,若a•
BC
+b•
CA
+c•
AB
=0.求证:△ABC是等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|2≤x≤4},B={x|x2+ax+a≤0},若A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(
π
6
-2x),x∈[-π,0]
的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1-sin6x-cos6x
1-sin4x-cos4x
=
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的各项均为正数,其前n项和为Sn,且an2+2an=4Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)bn=
4
an2 
(n∈N°),Tn=b1+b2+…+bn,求证:Tn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(
π
6
x+
π
2

(1)用“五点法”作图作出y=f(x)的一个周期的图象;(列表作图)
(2)求函数f(x)的最大值,并写出取得最大值时自变量x的取值集合;
(3)函数y=f(x)可以由函数y=cosx如何变化得到?写出变化过程.

查看答案和解析>>

同步练习册答案