精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+ln(x+1).
(1)当a=-
1
4
时,求函数f(x)的单调区间;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)利用ln(x+1)≤x,求证:ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}<1
(其中n∈N*,e是自然对数的底数).
分析:(1)把a=-
1
4
代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,只要求出ax2+ln(x+1)-x的最小值即可,构造函数,利用导数研究其最值问题;
(3)利用不等式ln(x+1)≤x对所要证明的不等式进行放缩,然后利用裂项相消法进行求和,从而进行证明;
解答:解:(1)当a=-
1
4
时,f(x)=-
1
4
x2+ln(x+1)(x>-1),
f′(x)=-
1
2
x+
1
x+1
=-
(x+2)(x-1)
2(x+1)
(x>-1),
由f'(x)>0,解得-1<x<1,由f'(x)<0,解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),
只需g(x)max≤0即可.
g′(x)=2ax+
1
x+1
-1=
x[2ax+(2a-1)]
x+1

(ⅰ)当a=0时,g′(x)=
-x
x+1
,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,令g′(x)=
x[2ax+(2a-1)]
x+1
=0,因x∈[0,+∞),所以x=
1
2a
-1,
①若
1
2a
-1<0,即a>
1
2
时,在区间(0,+∞)上,g'(x)>0,
则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
1
2a
-1≥0,即0<a≤
1
2
时,函数g(x)在(0,
1
2a
-1)上单调递减,在区间(
1
2a
-1,+∞)上单调递增,
同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=
x[2ax+(2a-1)]
x+1

∵x∈[0,+∞),∴2ax+(2a-1)<0,
∴g'(x)<0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(3)因为ln(x+1)≤x,且
2n
(2n-1+1)(2n+1)
=2(
1
2n-1+1
-
1
2n+1
),
所以ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}
=ln(1+
2
2×3
)+ln(1+
4
3×5
)+ln(1+
8
5×9
)+…+ln[1+
2n
(2n-1+1)(2n+1)
]<
2
2×3
+
4
3×5
+
8
5×9
+…+
2n
(2n-1+1)(2n+1)

=2[(
1
2
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
9
)+…+(
1
2n-1+1
-
1
2n+1
)]
=2[(
1
2
-
1
2n+1
)]<1,
ln{(1+
2
2×3
)(1+
4
3×5
)(1+
8
5×9
)•…•[1+
2n
(2n-1+1)(2n+1)
]}<1
点评:此题主要考查利用导数研究函数的单调区间和最值问题,解题过程中多次用到了转化的思想,第二题是函数的恒成立问题,转化为函数最值问题解决,第三问不等式的证明要借助所给不等式,利用它进行放缩证明,本题难度比较大,是一道综合题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案