精英家教网 > 高中数学 > 题目详情
利用圆的性质类比得出求的性质,你认为利用类比推理由圆的性质“与圆心距离相等的两弦相等”可得到球的性质是
 
考点:类比推理
专题:综合题,推理和证明
分析:在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质.
解答: 解:利用类比推理由圆的性质“与圆心距离相等的两弦相等”可得到球的性质是与球心距离相等的两截面圆(面积)相等.
故答案为:与球心距离相等的两截面圆(面积)相等.
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=3-4cos(2x+
π
3
),x∈[-
π
3
π
6
],求该函数的最大值,最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1
6
x3+
1
2
(a-2)x2,h(x)=2alnx,f(x)=g′(x)-h(x).
(1)g(x)在(1,2)单调递增,求a的取值范围.
(2)当a∈R时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为d,前n项和为Sn,且满足
S4≥10
S5≤15
(*)

(1)试用a1,d表示不等式组(*),并在给定的坐标系中用阴影画出不等式组表示的平面区域;
(2)求a4的最大值,并指出此时数列{an}的公差d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

现欲建造一个无盖的长方体水池,其长、宽、高分别为a、a、b,且a2•b=3,已知底面的单位造价为150元,四壁的单位造价为100元,
(1)试求无盖的长方体水池的总造价y表示为a的函数;
(2)当a为何值时,总价y取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+ϕ)(ω>0,0<ϕ<π)的图象如图所示,则ω等于(  )
A、
1
3
B、
2
3
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=xlnx,若f′(x0)=2,则x0等于(  )
A、e2
B、e
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列各式:1>
1
2
,1+
1
2
+
1
3
>1,1+
1
2
+
1
3
+
1
4
+…+
1
7
3
2
,1+
1
2
+
1
3
+
1
4
+…+
1
15
>2,…则按此规律可猜想此类不等式的一般形式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρ=
4cosθ
sin2θ
,以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,直线l的参数方程为
x=-
2
2
t
y=1+
2
2
t
(t为参数).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,把直线l的参数方程化为普通方程;
(Ⅱ)求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

同步练习册答案