精英家教网 > 高中数学 > 题目详情
12.某学校为了制定治理学校门口上学,放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查,得到了如下的列联表(单位:人)
同一限定区域停车不同一限定区域停车合计
5
10
合计50
已知在抽取的50分调查问卷中速记抽取一份,抽到不同意限定区域停车问卷的概率为$\frac{2}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握恩威是否同意限定区域停车与家长的性别有关?请说明理由.
附临界表及参考公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)根据在抽取的50分调查问卷中速记抽取一份,抽到不同意限定区域停车问卷的概率为$\frac{2}{5}$,可得不同意限定区域停车的人数,即可得到列联表;
(2)利用公式求得K2,与临界值比较,即可得到结论.

解答 解:(1)2×2列联表

同一限定区域停车不同一限定区域停车合计
20525
101525
合计302050
(2)因为K2=$\frac{50(20×15-5×10)^{2}}{25×25×30×20}$≈8.333
又 P(k2≥7.789)=0.005=0.5%.…(11分)
所以,我们有99.5%的把握恩威是否同意限定区域停车与家长的性别有关.

点评 本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若求O的半径为4,且球心O到平面α的距离为$\sqrt{3}$,则平面α截球O所得截面圆的面积为(  )
A.πB.10πC.13πD.52π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.事件A,B是相互独立的,P(A)=0.4,P(B)=0.3,下列四个式子:①P(AB)=0.12;②P($\overline{A}$B)=0.18;③P(A$\overline{B}$)=0.28;④P($\overline{A}$$\overline{B}$)=0.42.其中正确的有(  )
A.4个B.2个C.3个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α是第四象限角,tanα=-$\frac{5}{12}$,则sinα=(  )
A.$\frac{1}{5}$B.$\frac{5}{13}$C.$-\frac{5}{13}$D.$-\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,已知a1+a2+…+an=2n-1,则a12+a22+…+an2=$\frac{1}{3}$(4n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=sin(x-$\frac{π}{6}$)cosx+1.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[$\frac{π}{12}$,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)若对于任意的x∈[1,e],f(x)≤mx恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}中,a1=2,an+1=an+c•2n(c是常数,n=1,2,3…),且a1,a2,a3成公比不为1的等比数列.
(Ⅰ)求c的值;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

同步练习册答案