分析 (Ⅰ)由递推式表示出a2,a3,由a1,a2,a3成等比数列可得关于c的方程,解出即得c值,注意检验;
(Ⅱ)利用累加法可求得an,注意检验n=1时是否满足an;
解答 解:(Ⅰ)a1=2,a2=2+2c,a3=2+6c,
∵a1,a2,a3成等比数列,
∴(2+2c)2=2(2+6c),
解得c=0或c=1.
当c=0时,a1=a2=a3,不符合题意舍去,故c=1.
( 2)∵an+1=an+2n,
∴a2=a1+21,
a3=a2+22,
a4=a3+23,
…,
an=an-1+2n-1,
累加可得an=a1+2+21+22+…+2n-1=2+$\frac{2(1-{2}^{n-1})}{1-2}$=2n,
当n=1时,也满足,
故{an}的通项公式an=2n,(n∈N*)
点评 本题考查等比数列的通项公式、用递推式、累加法求通项公式等知识,属中档题.
科目:高中数学 来源: 题型:解答题
| 同一限定区域停车 | 不同一限定区域停车 | 合计 | |
| 男 | 5 | ||
| 女 | 10 | ||
| 合计 | 50 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com