精英家教网 > 高中数学 > 题目详情
10.已知复数x=(a+i)(1-i),a∈R,i是虚数单位,且x=$\overline{x}$,则a=(  )
A.0B.1C.-1D.-2

分析 利用复数代数形式的乘法运算化简,再由复数相等即可求出a的值

解答 解:x=(a+i)(1-i)=a+1+(1-a)i,
则$\overline{x}$=a+1-(1-a)i,
∵x=$\overline{x}$,
∴1-a=0,
即a=1,
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知|$\overrightarrow{a}$|=2,$\overrightarrow{b}$=(1,1),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°.
(1)求|$\overrightarrow{b}$|; 
(2)求 $\overrightarrow{a}$•$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在空间直角坐标系Oxyz中,点A(1,1,1),B(1,1,0),C(0,0,1),则△ABC为(  )
A.直角三角形B.等腰直角三角形C.正三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的偶函数,f(2)=1且对任意x∈R都有f(x+3)=f(x),则f(100)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数f(x)=2sin(x$+\frac{π}{4}$)的图象上各点的横坐标缩小为原来的$\frac{1}{2}$(纵坐标不变),再向右平移φ(φ>0)个单位后得到的图象关于直线x=$\frac{π}{2}$对称,则φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{3}{4}π$D.$\frac{3}{8}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设max{a,b}表示a,b两实数中的较大者,当-π<x<π时,则不等式max{sinx,cosx}<max{1-$\sqrt{3}$sinx,1-$\sqrt{3}$cosx}的解集为(  )
A.(-π,$\frac{3π}{4}$]∪[$\frac{π}{4}$,π)B.(-π,0)∪($\frac{π}{4}$,π)C.(-π,0)∪($\frac{π}{2}$,π)D.(-π,-$\frac{3π}{4}$]∪[$\frac{π}{4}$,$\frac{3π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)=$\frac{1}{3}$x3+$\frac{1}{2}(1-a)$x2-ax+$\frac{1}{3}$(a>0),当0≤x≤a时,f(x)的值域为[-$\frac{1}{3}$,$\frac{1}{3}$],则a=(  )
A.2B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=ax(a>0,a≠1)在[-2,1]上的最大值为4,最小值为m,且函数$g(x)=(1-4m)\sqrt{x}$在[0,+∞)上是减函数,则a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①$f(x)=3-\frac{4}{x}$不可能是k型函数;
②若函数$y=\frac{{({a^2}+a)x-1}}{{{a^2}x}}(a≠0)$是1型函数,则n-m的最大值为$\frac{{2\sqrt{3}}}{3}$;
③设函数f(x)=x3+2x2+x(x≤0)是k型函数,则k的最小值为$\frac{4}{9}$.
④若函数$y=-\frac{1}{2}{x^2}+x$是3型函数,则m=-4,n=0;
其中正确的说法为②④.(填入所有正确说法的序号)

查看答案和解析>>

同步练习册答案