精英家教网 > 高中数学 > 题目详情
5.将函数f(x)=2sin(x$+\frac{π}{4}$)的图象上各点的横坐标缩小为原来的$\frac{1}{2}$(纵坐标不变),再向右平移φ(φ>0)个单位后得到的图象关于直线x=$\frac{π}{2}$对称,则φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{3}{4}π$D.$\frac{3}{8}π$

分析 根据三角函数的平移变换规律,求出变换后的解析式,结合三角函数的性质即可求出φ的最小值.

解答 解:函数f(x)=2sin(x$+\frac{π}{4}$)的图象上各点的横坐标缩小为原来的$\frac{1}{2}$(纵坐标不变),可得y=2sin(2x$+\frac{π}{4}$),
再向右平移φ(φ>0)个单位,可得y=2sin[2(x-φ)$+\frac{π}{4}$]=2sin(2x-2φ+$\frac{π}{4}$),其图象关于直线x=$\frac{π}{2}$对称,
即π-2φ+$\frac{π}{4}$=$±\frac{π}{2}+kπ$,k∈Z.
∵φ>0,
∴当k=0时,可得φ的最小值$\frac{3π}{8}$.
故选:D

点评 本题考查了三角函数的平移变换规律,和三角函数性质的运用.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若a>b,则下列不等式成立的是(  )
A.lna>lnbB.0.3a>0.3bC.$\sqrt{a}>\sqrt{b}$D.$\root{3}{a}>\root{3}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A,B,C是圆O上的三点(点O为圆的圆心),若$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,AB=2AC=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-1,O是△ABC的外心,若$\overrightarrow{AO}$=x1$\overrightarrow{AB}$+x2$\overrightarrow{AC}$,则x1+x2的值为$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2+aln(x+1).
(1)若函数y=f(x)在区间[1,+∞)上是单调递增函数,求实数a的取值范围;
(2)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:0<$\frac{f({x}_{2})}{{x}_{1}}$<-$\frac{1}{2}$+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数x=(a+i)(1-i),a∈R,i是虚数单位,且x=$\overline{x}$,则a=(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ax+(x+1)ln(x+1).
(1)a=0时,求f(x)的单调递减区间;
(2)当a≥-1时,对任意的x≥1,有f(x)≥3成立,求a的取值范围;
(3)讨论函数f(x)正数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.条件p:-2<x<4,条件q:(x+2)(x+a)<0,若?p是?q的必要不充分条件,则a的取值范围是(  )
A.(4,+∞)B.(-∞,-4)C.(-∞,-4]D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.汽车从甲地匀速行驶到乙地运输,汽车速度不得超过80km/h,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(单位:km/h)的平方成正比,比例系数为0.1;固定部分为160元,为了使全程运输成本最小,汽车的速度为40km/h.

查看答案和解析>>

同步练习册答案