定义在R上的函数f(x)=ax3+bx2+cx(a≠0)的单调增区间为(-1,1),若方程3a(f(x))2+2bf(x)+c=0恰有6个不同的实根,则实数a的取值范围是________.
科目:高中数学 来源: 题型:
等边三角形ABC的边长为3,点D,E分别是边AB,AC上的点,且满足
=
=
(如图①).将△ADE沿DE折起到△A1DE的位置,使二面角A1-DE-B为直二面角,连接A1B,A1C(如图②).
![]()
(1)求证:A1D⊥平面BCED;
(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60°?若存在,求出PB的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:
①f(2 013)+f(-2 014)的值为0;
②函数f(x)在定义域上为周期是2的周期函数;
③直线y=x与函数f(x)的图象有1个交点;
④函数f(x)的值域为(-1,1).
其中正确命题的序号有________.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知正方体ABCD-A1B1C1D1的棱长是1,点E是对角线AC1上一动点,记AE=x(0<x<
),过点E平行于平面A1BD的截面将正方体分成两部分,其中点A所在的部分的体积为V(x),则函数y=V(x)的图象大致为( )
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
若函数f(x)=
的定义域为实数集R,则实数a的取值范围为( )
A.(-2,2)
B.(-∞,-2)∪(2,+∞)
C.(-∞,-2]∪[2,+∞)
D.[-2,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0).
关于函数f(x)=(ex)*
的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(-∞,0].
其中所有正确说法的个数为( )
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x.若对任意的x∈[a,a+2],不等式f(x+a)≥f2(x)恒成立,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
前不久,省社科院发布了2013年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
![]()
(1)指出这组数据的众数和中位数;
(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com