精英家教网 > 高中数学 > 题目详情

定义在R上的函数f(x)=ax3bx2cx(a≠0)的单调增区间为(-1,1),若方程3a(f(x))2+2bf(x)+c=0恰有6个不同的实根,则实数a的取值范围是________.


[解析] ∵函数f(x)=ax3bx2cx(a≠0)的单调增区间为(-1,1),∴-1和1是f′(x)=0的根.

f′(x)=3ax2+2bxc.

b=0,c=-3a.

f(x)=ax3-3ax.∵3a(f(x))2+2b(f(x))+c=0,∴3a(f(x))2-3a=0.

f2(x)=1.∴f(x)=±1.

∵方程恰有6个不同的实根,

a<-.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


设变量xy满足约束条件的最大值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


等边三角形ABC的边长为3,点DE分别是边ABAC上的点,且满足(如图①).将△ADE沿DE折起到△A1DE的位置,使二面角A1DEB为直二面角,连接A1BA1C(如图②).

(1)求证:A1D⊥平面BCED

(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60°?若存在,求出PB的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题:

f(2 013)+f(-2 014)的值为0;

②函数f(x)在定义域上为周期是2的周期函数;

③直线yx与函数f(x)的图象有1个交点;

④函数f(x)的值域为(-1,1).

其中正确命题的序号有________.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,已知正方体ABCDA1B1C1D1的棱长是1,点E是对角线AC1上一动点,记AEx(0<x<),过点E平行于平面A1BD的截面将正方体分成两部分,其中点A所在的部分的体积为V(x),则函数yV(x)的图象大致为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:


若函数f(x)=的定义域为实数集R,则实数a的取值范围为(  )

A.(-2,2)   

B.(-∞,-2)∪(2,+∞)

C.(-∞,-2]∪[2,+∞)   

D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:


在实数集R中定义一种运算“*”,对任意ab∈R,a*b为唯一确定的实数,且具有性质:

(1)对任意a∈R,a*0=a

(2)对任意ab∈R,a*bab+(a*0)+(b*0).

关于函数f(x)=(ex)*的性质,有如下说法:①函数f(x)的最小值为3;②函数f(x)为偶函数;③函数f(x)的单调递增区间为(-∞,0].

其中所有正确说法的个数为(  )

A.0                                    B.1 

C.2                                    D.3

查看答案和解析>>

科目:高中数学 来源: 题型:


f(x)是定义在R上的偶函数,且当x≥0时,f(x)=2x.若对任意的x∈[aa+2],不等式f(xa)≥f2(x)恒成立,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


前不久,省社科院发布了2013年度“城市居民幸福排行榜”,某市成为本年度城市最“幸福城”.随后,某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):

(1)指出这组数据的众数和中位数;

(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;

(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案