精英家教网 > 高中数学 > 题目详情

【题目】已知函数,当时,取得极值.

(1)求的值;

(2)若函数的极大值大于20,极小值小于5,试求的取值范围.

【答案】(1) b=3,c=-9 (2) (-7,10)

【解析】试题分析】(1)求出函数的导数,利用列方程组,求得的值.(2)(1)求得函数的表达式,利用函数的导数求得当时有极大值,时有极小值,根据题目要求极大值大于和极小值小于列不等式,可求得的取值范围.

试题解析

(1)f′(x)=3x2+2bxc,∵x=-3和x=1时,f(x)取得极值,

f′(-3)=0,f′(1)=0.

解得b=3,c=-9.

(2)由(1)知:f(x)=x3+3x2-9xdf′(x)=3x2+6x-9,

f′(x)>0,得3x2+6x-9>0,解得x<-3,或x>1,

x变化时,f′(x),f(x)的变化情况如下表:

函数f(x)的极大值大于20,极小值小于5,

解得-7<d<10.

d的取值范围是(-7,10).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (
A.5
B.4
C.9
D.5+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=xex﹣ae2x(a∈R)
(I)当a≥ 时,求证:f(x)≤0.
(II)若函数f(x)有两个极值点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:

(1)求出表中的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn , b1= 且3Sn=Sn1+2(n≥2,n∈N).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=anbn , n=1,2,3,…,Tn为数列{cn}的前n项和,Tn<m对n∈N*恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的解析式及单调递增区间;

(2)在中,分别为内角的对边,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若a1=1,an+1=3Sn(n≥1),则a6=(
A.3×44
B.3×44+1
C.44
D.44+1

查看答案和解析>>

同步练习册答案