【题目】已知函数,当和时,取得极值.
(1)求的值;
(2)若函数的极大值大于20,极小值小于5,试求的取值范围.
【答案】(1) b=3,c=-9 (2) (-7,10)
【解析】【试题分析】(1)求出函数的导数,利用列方程组,求得的值.(2)由(1)求得函数的表达式,利用函数的导数求得当时有极大值,当时有极小值,根据题目要求极大值大于和极小值小于列不等式,可求得的取值范围.
【试题解析】
(1)f′(x)=3x2+2bx+c,∵当x=-3和x=1时,f(x)取得极值,
∴f′(-3)=0,f′(1)=0.
∴解得b=3,c=-9.
(2)由(1)知:f(x)=x3+3x2-9x+d, f′(x)=3x2+6x-9,
令f′(x)>0,得3x2+6x-9>0,解得x<-3,或x>1,
∴当x变化时,f′(x),f(x)的变化情况如下表:
∵函数f(x)的极大值大于20,极小值小于5,
∴解得-7<d<10.
∴d的取值范围是(-7,10).
科目:高中数学 来源: 题型:
【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 = +μ (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 ( )
A.5
B.4
C.9
D.5+4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式an;
(2)若a3 , a5分别是等差数列{bn}的第4项和第16项,求数列{bn}的通项公式及前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:
(1)求出表中的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn , b1= 且3Sn=Sn﹣1+2(n≥2,n∈N).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=anbn , n=1,2,3,…,Tn为数列{cn}的前n项和,Tn<m对n∈N*恒成立,求m的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com