精英家教网 > 高中数学 > 题目详情
2.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+a,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?参考公式:
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

分析 (1)利用题目条件直接画出散点图即可.
(2)利用条件求解回归直线方程的参数,即可.
(3)利用回归直线方程求解推出结果即可.

解答 解:(1)散点图如图所示,
…(3分)
(2)由表中数据得:$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=52.5,$\overline{x}$=3.5,$\overline{y}$=3.5;$\sum_{i=1}^{4}{{x}_{i}}^{2}$=54,∴$\widehat{b}$=$\frac{\sum_{i=1}^{4}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{4}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{52.5-4×3.5×3.5}{54-4×3.{5}^{2}}$=0.7,
,$\widehat{a}$=$\overline{y}-\widehat{b}\overline{x}$=3.5-0.7×3.5=1.05,
∴$\widehat{y}$=0.7x+1.05                              …(8分)
(3)将x=10代入回归直线方程,得$\widehat{y}$=0.7×10+1.05=8.05(小时)
预测加工10个零件需要8.05小时.              …(12分)

点评 本题考查回归直线方程的求法,散点图的画法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.随机变量X的分布列如下:若E(X)=$\frac{15}{8}$,则D(X)等于(  )
X123
P0.5xy
A.$\frac{7}{32}$B.$\frac{9}{32}$C.$\frac{33}{64}$D.$\frac{55}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2$\sqrt{3}$,BC=6.
(1)求证:BD⊥平面PAC;
(2)求平面PBD与平面BDA的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直角梯形ABCD中,∠BAD=90°,AD∥BC,AB=2,AD=$\frac{3}{2}$,BC=$\frac{1}{2}$,椭圆以A、B为焦点且经过点D.
(Ⅰ)建立适当的直角坐标系,求椭圆的方程;
(Ⅱ)若点E满足$\overrightarrow{EC}$=$\frac{1}{2}$$\overrightarrow{AB}$,问是否存在直线l与椭圆交于M、N两点,且|ME|=|NE|?若存在,求出直线l与AB夹角θ的正切值的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,椭圆C1:$\frac{{x}^{2}}{4}$+y2=1和双曲线C2:$\frac{{x}^{2}}{4}$-y2=1有公共顶点A,B,P,Q分别在C1,C2且异于A,B点.直线AP,BP,AQ,BQ的斜率分别为k1,k2,k3,k4且k1+k2+k3+k4=0.
(1)求证:O,P,Q共线.
(2)设F1,F2分别为C1,C2的右焦点,PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设f(x)=x-alnx.(a≠0)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)≥a2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆F1:(x+$\sqrt{3}$)2+y2=16,圆心为F1,定点F2($\sqrt{3}$,0),P为圆F1上一点,线段PF2的垂直平分线与直线PF1交于点Q.
(1)求点Q的轨迹C的方程;
(2)过点(0,2)的直线l与曲线C交于不同的两点A和B,且满足∠AOB<90°(O为坐标原点),求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若以$\overrightarrow{AB}$为直径的圆过原点O,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若An=$\overline{{a_1}{a_2}…{a_n}}$(ai=0或1,i=1,2,…n),则称An为0和1的一个n位排列,对于An,将排列$\overline{{a_n}{a_1}{a_2}…{a_{n-1}}}$记为R1(An);将排列$\overline{{a_{n-1}}{a_n}{a_1}{a_2}…{a_{n-2}}}$记为R2(An);依此类推,直至Rn(An)=An.对于排列An和Ri(An)(i=1,2,…n-1),它们对应位置数字相同的个数减去对应位置数字不同的个数,叫做An和Ri(An)的相关值,记作t(An,Ri(An)),
(Ⅰ)例如A3=$\overline{110}$,则R1(A3)=$\overline{011}$,t(A3,R1(A3))=-1;
若t(An,Ri(An))=-1(i=1,2,…n-1),则称An为最佳排列
(Ⅱ)当n=3,写出所有的n位排列,并求出所有的最佳排列A3
(Ⅲ)证明:当n=5,不存在最佳排列A5

查看答案和解析>>

同步练习册答案